
Modular Transformation
Bonn workshop: 26-28 / 02

Agenda

- Modularity
- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Modularity levels

Solution, Software Component and Entity levels:

https://openimis.atlassian.net/wiki/spaces/OP/pages/586383361/Target+modular+Architecture

● Solution level : OpenHIE interop
● Software components level: Plugins, contributions & messaging
● Entity level: entity (and associated screens) customization

https://openimis.atlassian.net/wiki/spaces/OP/pages/586383361/Target+modular+Architecture

● Interoperability: “connectors”, data exchanges
● Encapsulate “experience” of others in the field
● Replaceability (more or less theoretical)

● … but standards have a cost
○ they constraint the solution landscape (by principle: whatever flexibility/extensibility they claim to support)

○ they also address problems you don’t have (now)

Why modularity?
● Flexibility (operate in distinct contexts)

● Focus on (module encapsulated) added value (and delegate to others for what they do best)

● Ease evolution (decoupled modules can have distinct lifecycles)

● Ease “spread” teams collaboration (ease build of source community)

Modularity and “standards” (all specifications, not only talking about FHIR)

Modularity and openIMIS
Today openIMIS is “standalone” and “monolithic” Tomorrow openIMISs are platforms integrated into

large landscape and assembled from “modules”

MS-SQL
(with stored procs)

Web app
(*.asp)

Web
services

UHC

 Online BE

Web FE

 Batch BE

Database

Te
ch

no
lo

gy
 a

xi
s

Business domain axis

Claims Insurees Locations ...

● Modules have to be loosely coupled, yet:

○ we have to guarantee data integrity

○ we have to guarantee compatibility… along modules lifecycles, assembled in various contexts

● Module boundaries is difficult to define (need to anticipate where we will need to “cut”)
… and errors at that step are the most expensive

The cost of modularity

Coarse grained

- Few dependencies to manage (easy to develop)
- Performances:

- Optimisation capabilities
- Less distributed system - friendly
- Easy to “operate” (install, backup, monitor,...)

- Less flexible / reusable

Fine grained

- Dependencies management (& development constraints)

- Performances:
- Communications between modules
- Distributed system - ready
- Harder to “operate” (install, backup, monitor,...)

- Flexibility (,...)

Modules boundaries “hint” questions
● Is there an existing product that does ‘this’ “for itself” ?

(... and towards which I should be able to build an interface)

● Do I have to (anticipate the need for) provide distinct implementation of ‘this’ in distinct
contextes ?

○ … because user organisation is different
○ … because intrinsic complexity is different
○ ...

● Are these functionalities enabled/disabled altogether in one context

“Static” (data) boundaries
Users

HFRClaims

Products
Services

Person
Insuree

Policy

Payer

Premium

“Dynamic” (UI/service/...) boundaries
FamilyDAL.vb

Keeping dependencies under control
- Prevent bi-directional dependencies (... and cyclic dependencies!)

- Dependency Inversion Principle

- Open/Close Principle
- Extension Points
- Composition (over inheritance)

- Loosely coupling
- Events and pub-sub and/or mapped services (internal bus, ESB,...)

Claim Threshold
Amount

User
Registered by

Claim

UserProperties

User
Registered by

User Claim Threshold Amount

Claim

Agenda

- Modularity
- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Transition strategies
“One shot” (rebuild + data migration) “Iterative and incremental”

Agenda

- Modularity
- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Technology stack
Choice criteria:

- Open Source based, Open Sourced and Open Source “friendly”
- “Main stream” and “future proof”
- Well documented and easy to access (learn / ...) ⇒ easy to contribute to openIMIS

Open Source known difficulties
- No ‘authority’ to guide our choices

… and take the responsibility of the coherence of the whole
- More “volatile” (subject to ‘hypes’)
- Less (guided) ‘transition’ between components

openIMIS -
Monolithic instance

openIMIS Web FE

openIMIS BE

openIMIS DB

openIMIS -
Dedicated DB instance

openIMIS Web FE

openIMIS BE

openIMIS DB

openIMIS -
Distributed deployment

openIMIS Web FE

openIMIS BE

openIMIS DB

openIMIS
 Online BE

openIMIS DB

openIMIS Web FE

openIMIS -
Highly-distributed

openIMIS
 Batch BE

Scale UP

Containerization: deployment “à la carte”

Technology stack

Online BE

DB

Web FE

Batch
BE

Material-UI
React JS
Redux

Django REST Framework
Django/Python
+Celery & RabbitMQ

Airflow

SQL-Server > Postgres

Agenda

- Modularity
- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

openIMIS (current)

openIMIS Web

openIMIS Web Services

openIMIS DB

HFR
(proxy)

Payers
(proxy)

...

Web FE core

Phase 1 : all proxies

Phase 1 : Locations

Phase 1: all proxies
Deliverables:

From currrent openIMIS
Login API
Pages without (head) menu

From modularized openIMIS
Login
Coarse decomposition into “modules”
Main menu (by user profile?) ‘rebuilt’ (via contibutions)
Assembly/deployment procedures (front only)

Risks:
Wrong decomposition
Opening security breach

Phase 2 : modularize (web) application

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

openIMIS (current)

openIMIS DB

openIMIS Web

openIMIS Web Services

HFRPayers ...

Web FE core

Payers
API

Online BE core Batch BE core

Payers
Batch

Migrating code only (no data migration) in n iterations (by module or group of modules)

HFR
API

- django model from SQL-Server database: django.db.models.*
- Enable django admin

- Wire REST API: django rest framework
- and django rest jsonapi
- and django dynamic rest

- Add REST ‘actions’
- with dispatched event
- detaching from http request (start the broker,...)

- Implement batch processes
- pagination & transaction
- N+1 queries
- … and deploy in airflow

Phase 2: modularization iterations - backend

- React components and contributions

- Redux for “dynamic” dependency

Phase 2: modularization iterations - frontend

Phase 2 : modularize (web) application
Deliverables:

.NET code & MS-SQL stored procedures taken over
Mobile app connected to new platform

Risks:
Database accessed from distinct app servers ⇒ concurrent changes (cache problem),...
Performance in the (new) application layers and/or interactions with database

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS (Postgres) DB

HFRPayers ...

Web FE core

HFR Online

Online BE core Batch BE core

HFR Batch

Payer

Payers
API

LocationopenIMIS DB

openIMIS (MSSQL) DB

Phase 3 : database switch
Migrating data only (no code migration) in 1 shot, applying only data format transformation (datetime,...)
(no database structure change)

Phase 3: database switch
Deliverables:

Data migrated to the new database
Application connected to new database

Risks:
New platform stability (database tuning,...)
Side effects of data formats changes (timestamps vs. datetime… with tz?)

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

HFR
(limited)

Payers ...

Web FE core

HFR Online
(delegated)

Online BE core Batch BE core

HFR Batch
(delegated)

DHIS2 (as HFR)

Org. Units
Mgmt

Org. Units
API

Payer

Payers
API

Location

FHIR - compliant
FHIR API

MRS (,...)

Phase 4 : module refactorings
Refactoring (and adding) modules within dedicated iterations...

Postgres JSONB & Fhirbase
● Postgres JSONB

… where RDBS meets NoSQL

● FHIRBase

… the FHIR data model implemented in Postgres (using JSONB)

 middlename

Modularity (contribution)

Claim
 declaration_date

Insuree
 name
 surname

10..n

Claim
 id
 declaration_date
 insuree

Insuree
 id
 name
 surname
 extended_attributes

{ middlename : xxx }

Database

Modularity - Backend

Database

BE core UUIDModel ExtendableModel

BE claims BE insuree
Claim Insuree

API (Django REST Framework):
Side-relation vs. Embedded
Dynamic filtering

Modularity - Frontend

FE Claim

ClaimList ClaimListItem

ClaimSearcherClaimMenu

FE Insuree

InsureePicker

InsureeBasicCriteria

InsureeListItemContribution

Contribute to

openIMIS BE: step beyond (too far?)

openIMIS -
Highly-distributed

openIMIS Web FE

openIMIS
 Online BE

openIMIS DB

openIMIS
 Batch BE Synchronous

API

Asynchronous
API

Batch

message broker

batch

message broker

openIMIS
BE module

openIMIS
BE module

openIMIS
BE module...

openIMIS DB openIMIS DB

Agenda (23/01)
Conceptual (cfr. wiki)

- About micro-services
- About NoSQL database

Migration strategy (“illustrated”)

Technical stack (showcase)

- Containers (docker)
- Front (Material-ui, React & Redux)
- Back (Django/python)
- Database (SQL-Server > Postgres)

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

openIMIS (current)

openIMIS Web

openIMIS Web Services

openIMIS DB

HFR
(proxy)

Payers ...

Web FE core

Payers
(proxy)

Online BE core

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

openIMIS (current)

openIMIS Web

openIMIS Web Services

openIMIS DB

HFR
(proxy)

Payers ...

Web FE core

Payers
API

Online BE core Batch BE core

Payers
Batch

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

openIMIS (current)

openIMIS Web

openIMIS Web Services

openIMIS DB

HFR
(proxy)

Payers ...

Web FE core

Payers
API

Online BE core Batch BE core

Payers
Batch

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS (Postgres) DB

HFR
(limited)

Payers ...

Web FE core

HFR Online
(delegated)

Online BE core Batch BE core

HFR Batch
(delegated)

DHIS2 (as HFR)

Org. Units
Mgmt

Org. Units
API

Payers
API

openIMIS DB

openIMIS (MSSQL) DB

openIMIS (current)

openIMIS Web

openIMIS Web Services

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS (Postgres) DB

HFR
(limited)

Payers ...

Web FE core

HFR Online
(delegated)

Online BE core Batch BE core

HFR Batch
(delegated)

DHIS2 (as HFR)

Org. Units
Mgmt

Org. Units
API

Payer

Payers
API

LocationopenIMIS DB

openIMIS (MSSQL) DB

openIMIS (Web & Mobile) FE

openIMIS (Online & Batch) BE

openIMIS DB

HFR
(limited)

Payers ...

Web FE core

HFR Online
(delegated)

Online BE core Batch BE core

HFR Batch
(delegated)

DHIS2 (as HFR)

Org. Units
Mgmt

Org. Units
API

Payer

Payers
API

Location

FHIR - compliant
FHIR API

MRS (,...)

Agenda 23/01
Conceptual (cfr. wiki)

- About micro-services
- About NoSQL database

Migration strategy (“illustrated”)

Technical stack (showcase)

- Containers (docker)
- Front (Material-ui, React & Redux)
- Back (Django/python)
- Database (SQL-Server > Postgres)

Web FE Docker

Online BE Docker Batch BE Docker

DB Docker

Online BE

DB

Web FE

Batch
BE

Online BE

DB

Web FE

Batch
BE

Material-UI
React JS
Redux

Django REST Framework
Django Admin
Django
Python

Airflow

SQL-Server > Postgres

Agenda 31/01

FIHR integration

Feedback on Technology Stack (?)

Licensing

Modularity (contributions)

Licensing
docker: Apache 2.0 license

postgres: https://www.postgresql.org/about/licence/ “a liberal Open Source license, similar to the BSD or MIT licenses.”

python: https://docs.python.org/3/license.html > https://opensource.org/

django: very light: https://github.com/django/django/blob/master/LICENSE

django REST Framework: https://www.django-rest-framework.org/#license

reactjs: MIT https://reactjs.org/docs/how-to-contribute.html#license

redux: MIT https://github.com/reduxjs/redux/blob/master/LICENSE.md

material-ui: MIT https://material-ui.com/discover-more/backers/#sponsors-amp-backers

https://github.com/docker/docker/blob/master/LICENSE
https://www.postgresql.org/about/licence/
https://docs.python.org/3/license.html
https://opensource.org/
https://github.com/django/django/blob/master/LICENSE
https://www.django-rest-framework.org/#license
https://reactjs.org/docs/how-to-contribute.html#license
https://github.com/reduxjs/redux/blob/master/LICENSE.md
https://material-ui.com/discover-more/backers/#sponsors-amp-backers

openIMIS - current database

