{ openIMIS

Modular Transformation
Bonn workshop: 26-28 / 02

3

Agenda
- Modularity

- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Modularity levels

Solution, Software Component and Entity levels:

https://openimis.atlassian.net/wiki/spaces/OP/pages/586383361/Target+modular+Architecture

e Solution level : OpenHIE interop
e Software components level: Plugins, contributions & messaging
e Entity level: entity (and associated screens) customization

0

https://openimis.atlassian.net/wiki/spaces/OP/pages/586383361/Target+modular+Architecture

Why modularity?

Flexibility (operate in distinct contexts)

Focus on (module encapsulated) added value (and delegate to others for what they do best)
Ease evolution (decoupled modules can have distinct lifecycles)

Ease “spread” teams collaboration (ease build of source community)

MOdUIanty and “StandardS” (all specifications, not only talking about FHIR)

Interoperability: “connectors”, data exchanges
Encapsulate “experience” of others in the field
Replaceability (more or less theoretical)

... but standards have a cost
) they constraint the solution Iandscape (by principle: whatever flexibility/extensibility they claim to support)
o they also address problems you don’t have (now) m\

Modularity and openIMIS

Today openlMIS is “standalone” and “monolithic” Tomorrow openlMISs are platforms integrated into
large landscape and assembled from “modules”

NG

Business domain axis
i g Claims|Insurees|Locations|...
®
- Web FE
o
L)
Web Web app 2 Online BE Batch BE
services || (* asp) §
= |
T Dgtabase
¥/ |
MS-SQL 4 |
(with stored procs) Y
o M B R K B e ¢
TS CR SHR HMIS FR HWR UHC

—— D .l & A ER
lobile linic

The cost of modularity

e Modules have to be loosely coupled, yet:
o we have to guarantee data integrity

o we have to guarantee compatibility... along modules lifecycles, assembled in various contexts

e Module boundaries is difficult to define (need to anticipate where we will need to “cut”)
... and errors at that step are the most expensive

Coarse grained Fine grained
- Few dependencies to manage (easy to develop) - Dependencies management (& development constraints)
- Performances: - Performances:
Optimisation capabilities - Communications between modules
Less distributed system - friendly - Distributed system - ready
Easy to “operate” (install, backup, monitor,...) - Harder to “operate” (install, backup, monitor,...)
- Less flexible / reusable - Flexibility (,...)

0

Modules boundaries “hint” questions

e Is there an existing product that does ‘this’ “for itself” ?
(... and towards which | should be able to build an interface)

e Do | have to (nticipate the need for) Provide distinct implementation of ‘this’in distinct

contextes ?

o ... because user organisation is different
o ... because intrinsic complexity is different
O

e Are these functionalities enabled/disabled altogether in one context

“Static’

(data) boundaries

gm;.ﬁmmﬂ

Person}

“Dynam IC” (Uliservicel...) boundaries

FamilyDAL.vb

Public Class FamilyDAL
Private data As New ExactSQL

'Corrected
Public Sub LoadFamily(ByRef eFamily As IMIS_EN.tblFamilies)

Dim data As New ExactSQL

Dim sSQL As String = ""
SELECT I.Insureeld, I.CHFID, I.LastName, I.OtherNames, I.DOB, I.Phone, I.isOffline InsureeIsOffline, I.Educat

sSQL
sSQL
sSQL
sSQL
sSQL
sSQL
sSQL
sSQL
sSQL
sSQL
sSQL
sSQL

data.

e W

4= "

&
1l

+
n

F.Poverty,

F.ConfirmationType, R.RegionId, R.RegionName, D.DistrictName, D.DistrictId, V.VillageId, V.Village

I.CurrentAddress, I.CurrentVillage , I.HFID, HF.LocationId FSPDistrictId, HF.HFCareType, F.FamilyType,"
F.FamilyAddress, F.Ethnicity,F.ConfirmationNo, F.ValidityTo, F.isOffline"
from tblFamilies F"

INNER JOIN
INNER JOIN
INNER JOIN
INNER JOIN
INNER JOIN
LEFT OUTER

tblvillages V ON V.VillageId = F.LocationId"
tblWards W ON W.WardId = V.WardId"
tb1lDistricts D ON D.DistrictId = W.DistrictId"
tblRegions R ON R.RegionId = D.RegionId"
tblInsuree i ON f.FamilyID = i.FamilyID"

JOIN tblHF HF ON HF.HFID = I.HFID"

WHERE F.FamilyId = @FamilyId"

setSQLCommand(sSQL, CommandType.Text)

data.params("@FamilyId", SqlDbType.Int, eFamily.FamilyID)
Dim dr As DataRow = data.Filldata() (@)
Dim eInsurees As New IMIS_EN.tblInsuree

Keeping dependencies under control

- Prevent bi-directional dependencies (... and cyclic dependencies!)
- Dependency Inversion Principle

User Claim User Claim

Registered by

Registered by
Claim Threshold |:>

Amount UserProperties User Claim Threshold Amount

- Open/Close Principle
- Extension Points
- Composition (over inheritance)

- Loosely coupling
- Events and pub-sub and/or mapped services (internal bus, ESB,...)

Agenda
- Modularity

- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Transition strategies

“One shot” (rebuild + data migration)

Web app

s || (~asp)

’ Onlirle BE

mi

FHIR Resources

Drar

“Iterative and incremental”

Agenda
- Modularity

- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Technology stack

Choice criteria:
- Open Source based, Open Sourced and Open Source “friendly”
- “Main stream” and “future proof”
- Well documented and easy to access (learn/...) = easy to contribute to openIMIS

Open Source known difficulties
- No ‘authority’ to guide our choices
... and take the responsibility of the coherence of the whole
- More “volatile” (subject to ‘hypes’)
- Less (guidea) ‘transition’ between components

0

Containerization: deployment “a la carte”

openlIMIS -
Monolithic instance

openlIMIS -
Dedicated DB instance

openlMIS Web FE

openlMIS Web FE

openlIMIS -
Distributed deployment

openlMIS Web FE

openlIMIS -
Highly-distributed

openlMIS BE

openlMIS BE

openlMIS Web FE

openIMIS DB

openIMIS BE

openIMIS DB

Scale UP

openIMIS DB

openIMIS openIMIS
Online BE Batch BE
openIMIS DB

Technology stack

Material-Ul
React JS
/ Redux
Web FE

Django REST Framework S_—

Django/Python — Online BE BE [Airflow
+Celery & RabbitMQ

DB \

SQL-Server > Postgres

Agenda
- Modularity

- Modularity & openIMIS
- Challenges of modularity

- Transition strategy
- Target technology stack
- Proposed transition phases

Phase 1 : all proxies

openlIMIS (current)

openlMIS Web

openlIMIS Web Services

openIMIS (Web &Mebite) FE
| Payers | | HFR
| _(proxy) (proxy)

Web FE core

openIMIS (Online & Batch) BE

openIMIS DB

openIMIS DB

Phase 1 : Locations

& C | @ localhost/Locatl

s.aspx

Producs
Health Facttes
Price Lists

Medical Services
Medial llems

Users

Enoment Offers.
Claim Acminitators

Payers

ge(s)

localhost/Locations.aspx

- =

(3 C | ® localhost/front/lo

» @ Locations
Claims

Health Facility
Claims

M Review
o Batch Run

Administration

openIMIS

copE

A

RIDZMIVI
RID2MIV2

RID2MIVE

Add

Edit

Phase 1: all proxies

Deliverables:

From currrent openIMIS
Login API
Pages without (head) menu

From modularized openIMIS
Login
Coarse decomposition into “modules”
Main menu (by user profile?) ‘rebuilt’ (via contibutions)
Assembly/deployment procedures (front only)

Risks:

Wrong decomposition
Opening security breach

Phase 2 : modularize (web) application

Migrating code only (no data migration) in n iterations (by module or group of modules)
openIMIS (Web &Mebite) FE

openlIMIS (current)

N\

i

nIMIS W

Payers HFR

Web FE core

openIMIS (Online & Batch) BE

ope

S Web

ices

Payers HFR

APLA |

| —1

L —

Payers
Batch

—{_—©nline BE core

Batch BE core

openIMIS DB

/

openIMIS DB

Phase 2: modularization iterations - backend

- django model from SQL-Server database: django.db.models. *
- Enable django admin

= Wire REST API django rest framework

- and django rest jsonapi
- and django dynamic rest

- Add REST ‘actions’

- with dispatched event
- detaching from http request (start the broker,...)

- Implement batch processes
- pagination & transaction
- N+1 queries
- ...anddeployin airflow

Phase 2: modularization iterations - frontend

- React components and contributions

- Redux for “dynamic” dependency

(3 C | ® localhost/front/locatior

%
(=]
a

€ > C | ® localhost:3000/fror

< < openIMIS
Q Locations e P o Q@ Locations Regions(s + + Municipalie(s] + +
w Tuiga @ Rapa Ultha Achi Rachla
Claims RiD: Uptol R1 RIDIM1 RIDIMIVL M: null F: null O: null
Rayers Tahida . Jamu Darbu
Health Facility . RrR2 RIDIM2 ull O: null £
S Claims Region 1 . .
R0002 D: null F
Health Facility Region
Review B -
o # Gams e
& BachRun Ultha Jambefo
= M Review RL RI1D2 null O: null £
o Tahida Uptol
Administration & BachRun R2 R1D3
Administration ame: Reg
Code:
Validity from: 2017-01-01T00:00:00Z
Validity to

Coffee Farmers Association

- D & &

Phase 2 : modularize (web) application

Deliverables:

.NET code & MS-SQL stored procedures taken over
Mobile app connected to new platform

Risks:

Database accessed from distinct app servers = concurrent changes (cache problem),...
Performance in the (new) application layers and/or interactions with database

Phase 3 : database switch

Migrating data only (no code migration) in 1 shot, applying only data format transformation (datetime,...)
(no database structure change) openIMIS (Web & Mobile) FE

Payers HFR

Web FE core
openIMIS (Online & Batch) BE

Payers HFR Online HFR Batch
API

| Online BE core || B/,'étch BE core

openIMIS (Postgres) DB /

N/

Payer Location

IS (vssaL) DB

Phase 3: database switch

Deliverables:

Data migrated to the new database
Application connected to new database

Risks:

New platform stability (database tuning,...)
Side effects of data formats changes (timestamps vs. datetime

... with tz?)

Phase 4 : module refactorings

Refactoring (and adding) modules within dedicated iterations...

.!1_

openlMIS (Web & Mobile) FE

DHIS2 (as HFR)

MRS (,...)

HFR .

Payers (limited) Or&gﬂ'ts

Web FE core
openIMIS (Online & Batch) BE
I
Payers HFR Online HFR Batch .
API (delegated) (delegated) OrgAgI”'ts
| Online BE core || B/;étch BE core |
openiMIS DB [FHIR API N
FHIR\- c;z)/mpliant
/

Payer

Location

Postgres JSONB & Fhirbase

e Postgres JSONB

... where RDBS meets NoSQL

e FHIRBase “

... the FHIR data model implemented in Postgres (using JSONB)

Modularity (contribution)

Database

Claim
declaration_date

Claim
id
declaration_date
insuree

Insuree
name
surname

middlename

Insuree
id
name
surname
extended_attributes
{ middlename : xxx }

Modularity - Backend

BE claims BE insuree
Claim Insuree
BE core UUIDModel ExtendableModel

Database

API (Django REST Framework):
Side-relation vs. Embedded
Dynamic filtering

Modularity - Frontend

FE Claim

ClaimMenu

ClaimSearcher

S

ClaimList

ClaimListltem

A

FE Insuree

InsureePicker

,

InsureeBasicCriteria

/

InsureeListltemContribution

Contribute to

>

Business Logic
Data Access
Layer

Microservice

Microservice

—
—

Monolithic Architecture

Ul
wservice

Microservice Microservice Microservice

Microservices Architecture

2000's

SERVICE ORIENTED ARCHITECTURE

e & O

[Enterprise Services Bus - ESB]

e 0L 0

SOA based applications are compromised of more loosely
coupled components that use an Enterprise Services Bus mes-
saging protocol to communicate between themselves.

2010's

MICROSERVICES ARCHITECTURE

PR

N

o
o
o

Microservices are a number of independent application ser-
vices delivering one single functionality in a loosely connected
and self-contained fashion, communicating through

light-weight messaging protocols such as HTTP, REST or
Thrift API.

openIMIS BE: step beyond (too far?)

openIMIS -

Highly-distributed

openlMIS Web FE

openIMIS openIMIS
Online BE Batch BE
openIMIS DB

Asynchronous

API
Synchronous

API
message broker

Batch

openIiMIS DB

openlIMIS
BE module

openIMIS openIMIS
BE module BE module

message broker

batch

openIMIS DB

Agenda (23/01)

Conceptual (cfr. wiki)

- About micro-services
- About NoSQL database

Migration strategy (“illustrated”)

Technical stack (showcase)

- Containers (docker)
- Front (Material-ui, React & Redux)

- Back (Django/python)
- Database (SQL-Server > Postgres)

openlIMIS (current)

openIMIS (Web &Mebite) FE

openlMIS Web

Payers

| —

HFR
(proxy)

-

Web FE core

openlIMIS Web Services

Payers
(proxy)

openIMIS (Online & Batch) BE
|

Online BE core

openIMIS DB

openIMIS DB

openlIMIS (current)

openIMIS (Web &Mebite) FE

openlMIS Web

-

Payers [|
| Payers |

HFR
(proxy)

Web FE core

openIMIS (Online & Batch) BE
|

openlIMIS Web Services

| —1

Payers
API

Payers
Batch

~_Oniline BE core

Batch BE core

openIMIS DB

openIMIS DB

openlIMIS (current)

openIMIS (Web &Mebite) FE

openlMIS Web

-

Payers [|
| Payers |

HFR
(proxy)

Web FE core

openIMIS (Online & Batch) BE
|

openlIMIS Web Services

| —1

Payers
API

Payers
Batch

_Ontine BE core

Batch BE core

openIMIS DB

openIMIS DB

openlIMIS (current)

openlMIS Web

openlIMIS Web Services

openIMIS (Web &Mebite) FE DHIS2 (as HFR)
HFR -
Payers (limited) or&gﬂ'ts
Web FE core
openIMIS (Online & Batch) BE
I
Payers HFR Online HFR Batch .
API (delegated) (delegated) OrgAgI”'ts
| Online BE core _}— Batch BE core

openlIMIS (ussaL) DB

openIMIS DB

M) DB

IS (vssaL) DB

DHIS2 (as HFR)

openIMIS (Web &Mebite) FE
HFR .
Payers (limited) Or&'gﬂ'ts
Web FE core
openIMIS (Online & Batch) BE
I
Payers HFR Online HFR Batch .
API (delegated) (delegated) OrgAllDJInlts
| Online BE core || B/,'étch BE core

open IMIS (Postgres) DB

/

Payer

N/

Location

DHIS2 (as HFR)

openIMIS (Web &Mebite) FE
HFR .
Payers (limited) Or&'gﬂ'ts
Web FE core
openIMIS (Online & Batch) BE MRS)
I
Payers HFR Online HFR Batch .
API (delegated) (delegated) OrgAllDJInlts
| Online BE core || B/;étch BE core |
openIMIS DB [FHIR API N
FHIR\- cg{mpliant
/
Payer Location

Agenda 23/01

Conceptual (cfr. wiki)

- About micro-services
- About NoSQL database

Migration strategy (“illustrated”)

Technical stack (showcase)

- Containers (docker)
- Front (Material-ui, React & Redux)

- Back (Django/python)
- Database (SQL-Server > Postgres)

Online BE Docker

DB Docker

Web FE

— Web FE Docker

Online BE

Batch
BE

— Batch BE Docker

DB

Django REST Framework
Django Admin

Django

Python

Material-Ul

Web FE

React JS
/ Redux

Online BE

Batch
BE

Airflow

DB

T

SQL-Server > Postgres

Agenda 31/01

FIHR integration
Feedback on Technology Stack (?)
Licensing

Modularity (contributions)

Licensing

docker: Apache 2.0 license

postgres: nhttps://www.postaresal.org/about/licence/ “a liberal Open Source license, similar to the BSD or MIT licenses.”

python: https://docs.python.org/3/license.html = https:/opensource.org/

django: very light: https://github.com/django/django/blob/master/LICENSE

django REST Framework: https:/www.django-rest-framework.org/#license

reactjs: MIT https://reactjs.org/docs/how-to-contribute.htmi#license

redux: MIT nhttps:/qithub.com/reduxis/redux/blob/master/LICENSE.md

material-ui: MIT https://material-ui.com/discover-more/backers/#sponsors-amp-backers

@

https://github.com/docker/docker/blob/master/LICENSE
https://www.postgresql.org/about/licence/
https://docs.python.org/3/license.html
https://opensource.org/
https://github.com/django/django/blob/master/LICENSE
https://www.django-rest-framework.org/#license
https://reactjs.org/docs/how-to-contribute.html#license
https://github.com/reduxjs/redux/blob/master/LICENSE.md
https://material-ui.com/discover-more/backers/#sponsors-amp-backers

5 tianguages

openIMIS - current database

B

= oremoeat], - [e : ;

g

>

= wpesdbacd

' e
P [,

L/ L i

* 2B iConfirmationTypes
e

& lcenscatontyoes

