
FHIR API
Fine-grained security brainstorming

22/01/2020

Current situation (01/2020)

frontend

Claim model

Claim GQL API

openimis-be-claim_py

REST API

openimis-be-api_fhir_py

backend

Current situation:

● FHIR API has been built before the Claim module:
GQL API - and the nested security - was not there at the time

● FHIR API was initially dedicated to (system)
integration (between trusted apps). The security
(authentication & authorization) level was not
foreseen to be at user level...

FHIR-compatible
APP

User identity (authentication)
In openIMIS backend, the authentication is based on the REMOTE_USER HTTP header

and this is the reason to 💣NEVER💣 expose backend “straight” to outside

Usage examples:

Session (cookie)-based
(current frontend way)

cookie

Session
User: xyz

gateway

backend

HTTP-Header: remote-user = xyz

Notes:
- the cookie is set by the legacy openIMIS login
- the session is created ‘intercepting’ the legacy login

Basic auth-based
(current fhir-api way)

HTTP-Header:
Authorization: Basic Ym9zY236Ym9zY28=

.htaccess

gateway

backend

HTTP-Header: remote-user = xyz

other app.

Connection vs. payload identity
(current fhir-api way)

HTTP-Header:
Authorization: Basic Ym9zY236Ym9zY28=
remote-user: xyz

.htaccess

gateway

backend

HTTP-Header: remote-user = xyz

other app.

Note:
Instead of a basic auth, the external app could be
forwarding a SSO token (or X.509 certificate,...) of a
(openIMIS) trusted authority

“extracted from”

Notes:
- Instead of a HTTP header (visible from outside), we can be
 transferring identity in message payload (FHIR ‘provenance’ ?)
- The basic-auth can be replaced by 2 way SSL certificates,...

http://www.hl7.org/fhir/provenance.html

User identity (authentication)
In any cases, the identities (‘logins’) must be agreed upon before the call
...or we can have an ‘auto-provisioning’ mechanism: when the request with/for a not yet known user, a

user is automatically added to (legacy) openIMIS (in tblUsers).

In openIMIS, there are ‘interactive’ and ‘technical’:
- Technical users are NOT defined in tblUsers and receive their rights ONLY via the (django default)

groups/permissions (django rules,...)

- Interactive users are defined in tblUsers (legacy openIMIS) table and receive all ‘legacy’ rights from

the ‘legacy’ roles/rights (in addition to django groups/permissions)

openIMIS first try to match user as an interactive user

… and “falls back” on a technical user

User identity… extended
Depending on chosen security token format (or agreed user header/payload section), the
identity can be ‘extended’ with some ‘profile attributes’(like roles… or even ‘the HF the user belongs to’,...).

This is especially handy for a fine-grained auto-provisioning (beware of the updates/revoke flows!)

… but requires the various apps (or the token authority) to agree (know) the various
attributes (roles,...) used by openIMIS (i.e. tblRoles/tblRights,...).

Objective: completely ‘outsource’ the user management to an external system
(AD, LDAP,...)

Authorization: endpoint security
Every (backend) module:

- can expose any new endpoints (/routes/URLs)... and, in the reference
gateway, there is (today) no ‘filtering’ on accessed routes (the gateway only check the
access to the openIMIS ‘as a whole’)

- can connect to the database (via the exposed django ‘models’)

As a consequence, by default, every module must perform the authorization part:
- is the user allowed to connect to that endpoint (a.k.a. ‘feature’)?
- can the user access that specific resource (claim,...)?
- ...

Towards central authorization
Provided that we don’t “allow” (pure convention) modules to use the other
modules’ models straight, we could be enforcing a central resource-based
authorization

Claim model

Claim GQL API

openimis-be-claim_py

REST API

openimis-be-api_fhir_py

backend

X
From openimis-be-api_fhir/views.py:

Uses / depends on

Central authorization alternatives
A. Re-use the fine-grained security implemented in GQL API

Claim model

Claim GQL API

openimis-be-claim_py

REST API

openimis-be-api_fhir_py

X

Instead of Claim (model) object use ClaimGQLType (that wraps Claim), and execute GQL queries (and mutations) straight

https://docs.graphene-python.org/en/latest/execution/execute/

Central authorization alternatives
B. Implement a ‘service’ (or API) layer in each module (to encapsulate the fine-grained security)...

openimis-be-claim_py

REST API

openimis-be-api_fhir_py

X
Claim GQL API Claim API

Claim model

gql-security django-security

Uses / depends on

?

x?

Either:
- we leave Claim GQL as is (and security is duplicated)
- … or we switch Claim GQL to Claim API calls

but loose the beauty/flexibility of Graphene/django integration (graph ‘navigation” in queries,...)
... which is also “bound” to the contribution mechanism in UI (contributed ‘projections’,...)

x?

Central authorization alternatives
C. Move the fine-grained security in a ‘middleware’, wrapping the model for all
modules (and the model’s module too)

openimis-be-claim_py

REST API

openimis-be-api_fhir_py

Claim model

Security middleware
X

Claim GQL API
gql-securityX
X

Alternatives comparison
Pros Cons

A. Re-use GQL API Nothing to change in Claim module.

GQL mutations reused (and the
associated audit mechanism).

Requires FHIR module (and others) to
manipulate GQLTypes (instead of the raw django
models), the GQL Mutations (for the
create/update/delete),...

B. Service layer as
inter-module API

‘Traditional’ approach, API could probably
even be exposed ‘straight’ in
JSON/XML/…

Requires to design (less flexible) and implement
($-🕜) the service layer

Either we change Claim GQL to use the Claim
API… or we duplicate security (within Claim module)

C. Wrap django model Keep current ‘straight-to-model’ flexibility
(both for GQL, FHIR… and any other module)

$-🕜 ? Needs to be investigated
(existing middleware libs or do we have to build our own,
compatibility with django-rules ?,...)

