
Bluesquare Analysis
Introduction 1

Current Situation 2
IT Point of View 2
User Point of View 5
Conclusion 6

Streams A. and B. 8
General Remarks 8

Assessment confidence 8
Custom vs. Delegated development 9
Module Dependencies 11
Architecture Guidelines 12

Evaluation of the Requested Features 13
Improved Claim Review 13

Configurable Claim Review Engine 13
AI-based Automated Claim Adjudication 15

Configurable Workflows 17
Claim Management Workflow 19
Beneficiary Enrollment Workflow 19
Insurance Scheme for Formal Sector 19
Communication platform 20
(HL7 FHIR compatible) Payment module 22

Not covered 23
Topic Dependencies and Suggested Roadmap 23

Stream C. 24

Introduction
The purpose of this document is to feed the discussion as teams prepare to undertake their
responses to the ​Request for Application #2019-016 openIMIS Modularization, Nepali
Functionality, and Community Development​ concept note phase. It should be considered a
snapshot of our current understanding and vision to guide the efficient allocation of the RFA
funding for the community.

We acknowledge that, thanks to the additional visibility provided by this RFA, new
opportunities and/or actors may be revealed that could change the priorities. We remain open
and in fact welcome these insights and feedback. There may be areas where we have
misperceived the scope and/or the importance of some points.

In other words, all statements made in this document should be challenged, tempered or even
contradicted: the most important thing for us is to bring these topics forward to support the
openIMIS community and help move the process forward.

As the current lead on the openIMIS software architecture work, in this document Bluesquare
would like to provide:

- A summary of the current situation to clearly depict the starting point of this work
assignment.

- A high-level decomposition of the work to reach the objectives setup in the RFA and, for
each block, a rough estimate of the complexity along two dimensions: business
complexity and technical complexity.

- A first look at the dependencies between the identified topics and propose a possible
roadmap to realize them, that is aligned to the current product roadmap.

The RFA is split into three work streams A, B and C. The work streams A & B are related to
openIMIS as a software (platform), while workstream C concerns the user community, its
governance and the initiatives required to improve/extend it.

Work items in Streams A and B are rather interrelated. So this document will discuss these
points in one section without distinguishing between their associated stream. Choices made for
Streams A and B will highly impact the work to be done in Stream C, however some generic
aspects related to Stream C are highlighted in a dedicated section.

Thank you in advance to the community for your thoughtful input on the proposed elements
herein.

1

https://static1.squarespace.com/static/59bc3457ccc5c5890fe7cacd/t/5d4b00b83e8e87000175c84e/1565196473770/RFA+%232019-016+openIMIS+Modularization.pdf
https://static1.squarespace.com/static/59bc3457ccc5c5890fe7cacd/t/5d4b00b83e8e87000175c84e/1565196473770/RFA+%232019-016+openIMIS+Modularization.pdf

Current Situation

IT Point of View
As described in the ​current product roadmap​, openIMIS is being re-written to reach a modular
architecture. The new modular architecture means that the openIMIS platform is in fact pursuing
two antagonistic objectives:

- openIMIS is implemented in Nepal and Tanzania, as a standalone (or close to it) “all in”
platform, and the re-written openIMIS will at least offer the same capabilities.
In other words, while the policies and claim processing are clearly identified as the core
feature of openIMIS, the software also offers, in a minimalist approach, the necessary
features to manage locations and health facilities, insurees, insurance products, medical
catalogs,... (cfr. ​https://openimis.readthedocs.io/en/latest/​)
Having a standalone ready-to-deploy platform is recognized as very important to ensure
openIMIS can be installed in any context.

- openIMIS added value primarily lies in policies and claims management. For all other
areas, relying on existing solutions is seen as a more comprehensive approach.
Integrating openIMIS into the OpenHIE ecosystem and delegating features (instead of
rewriting them into openIMIS) is thus identified as a major acceleration factor to reach a
fully functional management of UHC in various locations.

Until now, the priority has been given to the first objective (openIMIS “as is”, standalone). The
main concern has indeed been to minimise risk on current openIMIS implementations (Nepali
and Tanzania) and, therefore, put the priority on having the current set of features “as is” in the
new platform. The first allocated budget for the re-writing (Notice C.) is dedicated to the setup
the new platform and migrating two plugins (or modules). There was also a firm will to engage in
an iterative and incremental approach: at the cost of a lengthier and more complex IT project,
the rewriting had to be fully functional after each step. In order to prevent any side effect on the
legacy application, one major acknowledged constraint is to avoid any modification to the
current database structure. Until the .NET code is fully decommissioned, it will indeed be very
hard to guarantee (maintain) existing application stability while changing the database structure.
Following this, three ​sequential phases​ have been undertaken:

1. Software rewriting, with database ‘as is’ and legacy application proxied until completion.
2. Database switch: once all application code ported to the new platform (and notably all

stored procedures rewritten in python services). The roadmap was to move from
Microsoft MS-SQL Server to Postgres, and this for 2 reasons:

○ better embrace the open source community
○ enable JSONB technology for future developments and refactorings

3. Once on the new database, review priorities and make modules more flexible,
implementing new features, integrate with other solutions…

2

https://openimis.atlassian.net/wiki/spaces/OP/pages/40763442/Product+Roadmap
https://openimis.readthedocs.io/en/latest/
https://openimis.atlassian.net/wiki/spaces/OP/pages/592609307/Transformation+methodology

Note: one possible refactoring considered was to adopt the FHIR model as core
(internal) model in openIMIS (using fhirbase/Postgres)

We are currently in phase 1 (code rewrite), 2 of the 9 identified plugins/modules will be delivered
by the end of ongoing work (before the start of this RFA work assignment). One of the
complexities we are facing is the difference between the “Master” (normally aligned with
Tanzanian installation) and Nepali. A clear example of this complexity is the ‘enquiry’ feature.

The solution to address this in the architecture has been presented during the ​05/08 Gumzo ya
Mwezi​ and clearly highlights the added value of the contributions mechanism put in place. Yet
we expect to have more of these discrepancies and as a community we need to insist on using
the plugin/module composition approach instead of “branching” the code bases.

The Notice C. had also expressed the need for an HL7 FHIR API (initially only the claims) and,
during the kickoff workshop for that work assignment, we assessed the possibility to implement
it directly on the new platform.
This was made possible (at a reasonable cost) for several reasons:

- We were able to rapidly expose the business logic contained in the database stored
procedures for all necessary entities (claims, patients,...).

- The FHIR API is a backend-only component. FHIR API didn’t require the complete
platform setup before being developed: the sole online backend component was
needed.

- No database modifications were necessary.

3

https://openimis.atlassian.net/wiki/spaces/OP/pages/884179098/2019-08-05+Gumzo+ya+Mwezi
https://openimis.atlassian.net/wiki/spaces/OP/pages/884179098/2019-08-05+Gumzo+ya+Mwezi

To summarize, ​once the work assignment of Notice C. will be accomplished​, openIMIS will be:

In other words:

- most of the features are still in legacy application ​(.NET or Stored Proc)
- it will still ​not​ ​be​ ​safe ​to change the database scheme ​(adding tables should not be a problem)

About modularity:
In the current situation, the ​FHIR API​ is a monolith on top of modularized core modules.
This design is the result of a ​community ​fully aware decision​ (05/2019)​ where time to
availability and necessary workload have been favored over clean modularized implementation.
Within that agreed design, ​the quality of the work done for the FHIR API is not questioned
at all​… but it also highlights how easy and tempting it is to ‘forget’ about modularity: going
modular is not natural, it is even counter-intuitive and requires a strong commitment from all
community members.
Since FHIR API is not a “mandatory” module for openIMIS to operate, the consequence is “just”
that the FHIR API (as a whole) may not be available for some openIMIS implementations: the

4

https://openimis.atlassian.net/wiki/spaces/OP/pages/589561955/openIMIS+Plugins?preview=/589561955/825556996/openIMIS%20-%20fhir%20api%20architecture%20-%202019-05.pdf
https://openimis.atlassian.net/wiki/spaces/OP/pages/589561955/openIMIS+Plugins?preview=/589561955/825556996/openIMIS%20-%20fhir%20api%20architecture%20-%202019-05.pdf

core modules assembly may not be compatible with that (monolithic) reference FHIR API
module.
However, this kind of decision should ​never​ be allowed for core modules (insuree, policy,...) as
it would jeopardize the benefits of the architecture in place.

User Point of View
The new platform is dedicated to progressively replace the legacy one. In order to do so, the
new platform is providing the main application menu and either displays the new module pages
when available… or the legacy one when not available (we call them ‘proxied’ page).

For example, the Person & Families module is not yet migrated, so the Families/Groups menu
entry displays the legacy page:

5

The Claim module on the other side is being migrated. Thus the Health Facility Claims menu
entry displays the new UI:

Conclusion
The current setup has tremendous advantages for existing openIMIS installations… as a
transition phase:

● risk is minimized
● the fallback plan is “by design”
● ... and new features via the new platform (like the FHIR API) are immediately available.

However there are also drawbacks:
● hybrid old/new UX (User Experience)
● hybrid (.NET | React/Python on Docker) servers

We believe that the benefits largely outweigh the drawbacks for the existing implementation.
The Nepali team has given clear signs that new platform is the future: the FHIR API will be in
production very soon… and their high level of involvement as demonstrated by workstream B
scope in this current RFA is extremely positive.

6

Provided that we setup a carefully and jointly planned migration with Tanzania​, we are
very certain that they will also see the new platform as a real opportunity... and embrace it
eagerly.

Furthermore, as long as two technologies (.NET and React/Python) are used, ​it will continue
to split the developers community in two very distinct teams, with the risk that
communication between the two remains too low​.​ ​This lack of communication is ​not​ the
result of a lack of willingness : as things are set up today each development team has its own
“reality” (objectives, deadlines…) and can’t do much for the other. If we were using a single
development platform, the situation would be very different: thanks to the new modular
architecture, we could directly profit from each other’s progress and thus be more
involved/empowered/able to help each other.

For all these reasons, we believe a high priority should be given to work items that
include the migration of the legacy modules to the new platform in their scope.

7

Streams A. and B.
The RFA states that openIMIS core modules should be migrated to the new platform and also
identifies several extensions as high priority. Migrating a module from .NET to the new platform
isn’t something new and we believe that the approach undertaken until now is effective and can
be continued:

- Ensure the scope of the module is identified and clear to all;
- Design screens, taking the country specificities into account via community contributions;
- Develop/deploy in an iterative way, allowing the community to see the progress and

react when necessary.

In this section, we will assess the ‘new’ items from the RFA and propose either one or several
approaches to manage them. The assessment will be completed on a scale from 1 (small
workload/budget) to 7 (high workload/budget). It will also be performed along two axes:
technology (pure developer work) and business (complexity to set-up/operate in a specific
openIMIS implementation which links then directly to the workstream C).

In addition, before addressing the requested points of the RFA, we would like to formulate some
general remarks about assessment confidence, custom vs. delegated development and
architecture guidelines.

General Remarks

Assessment confidence
As the ToR notes, the different topics ​“ are at varying levels of finalization or point to current
discussions and it is envisaged that the successful applicant will actively engage in the
refinement of the functionality”​.

Furthermore, while the ​master user guide​ is a good source of information on how things are
currently working, experience has shown that there are country variations and so all module
development has to integrate the necessary flexibility to cope with the existing implementations
from the very start.

Finally our own diverse backgrounds and experience may widely impact how the complexity of
the topic is evaluated by any community actor: the complexity of business workflows to support
can be very different from one country (implementation) to the other. Having a tool that tries to
‘solve it all’ from the start is probably not the most realistic approach were it even feasible. It
requires program team to be able to effectively anticipate the program realities and correctly
identify the future needs and thus determine appropriate tool flexibility for each piece of the
puzzle.

8

https://openimis.readthedocs.io/en/latest/index.html

For these three reasons, while we do provide a general assessment of the complexity and
workload, these should not be considered the final or only say. We would recommend that each
work item should start with an analysis of the situation and the best pragmatic “next step” to be
identified as a community to determine the appropriate direction.

Custom vs. Delegated development
There are several ways to develop a desired module (set of features). These range from “all
custom code in the openIMIS platform”, to “fully delegated and interfaced”. Interfacing can be
done towards a specific system or following a (standardized) protocol (APIs, data exchange
structures,...), in which case the choice of the target system is theoretically irrelevant. However
most standardized protocols foresee some space for flexibility (extensions,..) and, while
choosing a standard clearly eases the process, it doesn’t solve everything.
Interfacing can also be done at various levels: database (data exchanges), api calls (online or
batch) and even frontend (integrated UI - user interfaces).

Generally speaking, custom implementation tends to cost more, provide a smaller set of
features/options and be less flexible,... but, on the other hand, custom code tends to be better
focussed on the essential (“keeping it simple”), integrates with user interfaces more effectively
and keeps the platform free from any additional dependency with other systems/protocols and
their own evolution path... which leads to improved and controlled maintenance costs (not
‘forced to upgrade’...).

Choosing to delegate a module to an external system (via standard protocol or not) is not an
easy process and doing so effectively requires the following:

- choose the target system (or, when possible, standard protocol);
- define the desired level of integration (data exchanges, API calls,...);
- develop the ‘connectors’ (from ETLs for data exchanges... to “connected widgets” in

case of UI integration);
- except for pure data integration (where data managed in external system is ‘injected’ in

openIMIS), develop the necessary “proxies” towards the delegated system (while,
ideally, only the ID to externalized entity should be enough, we often “need more”:
capability to ‘show’ the entity on the screen or in reports, cache for batch calculations... ;
and

- develop the necessary ‘callback flows’ from the target system (example: impact on policy
if a family composition is changed in external system, deletion/de-duplication of
entities...).

The drawbacks of delegating to an external system can be relatively well attenuated by passing
through a service broker platform. As identified in the RFA, OpenHIE is clearly a good candidate
for this. For ​Notice D: “Patient-Level Indicator Reporting”​ the ​proposal we participated in​ aims to
set up a connector between openIMIS FHIR API and the OpenHIE platform. In other words, if

9

https://static1.squarespace.com/static/59bc3457ccc5c5890fe7cacd/t/5cc1de3ff9619a28778725f9/1556209215732/Notice+D_RFA+2019-006_FINAL.pdf
https://applications.digitalsquare.io/content/towards-integrated-hie-approach-patient-level-indicator-reporting

we are awarded that work assignment, we would probably be able to reuse most of the
connector work and extend it to several openIMIS modules.

Note: the Notice D proposal places openIMIS as source (only) PoS for patient-level data. In the
context of this RFA, we will however need a bi-directional connector (i.e. openIMIS also as client
application) to enable module delegation.

10

Module Dependencies
The diagram below depicts the static dependencies (as they are written down in a database) of
the various modules and their main entities:

When migrating a module from the legacy platform to the new architecture, ​dependencies
don’t matter​. This is mainly because we keep the data model unchanged. Whatever user
interface/application the user uses to write into the database (and, behind it the backend code),
as long as the involved component writes the data the same way the legacy code does, there is
no impact.

Dependencies start to matter if, during the migration, we start changing the structure and/or the
‘business logic’.

Example​ (not hypothetical at all)​, if we migrate the Locations and Health Facilities to a system that:

● Manages them without a real distinction between Location and Health Facility ​(meaning, a
Health Facility is just one ‘kind of Location’)​;

● Provides an unlimited number of levels; and
● Where Health Facilities can be registered at each “level” ​(“regional hospital”, “district health

center”, “village facility”,...)​.

11

Suddenly, the way the claim (registered for a Health Facility) amount is calculated may need to
be adapted: it has to “bubble up” the Location hierarchy to the level where the price is defined.
Of course a more generic model will allow the implementation of the current openIMIS: with
good governance, we can ensure that the hierarchy has only four levels, that Persons are
registered at Village (4th) level and Health Facility at District (2nd)... But the purpose of
interfacing with an external system is to embrace more “interconnected” systems. In other
words, the Facility Registry system may itself be connected to systems where openIMIS
‘constraints’ are not relevant… if it does not pose a problem.

Thus the further “down” the link is made, the more the “additional flexibility” of the delegated
system will have an impact on openIMIS.

Alternatively, the further “up” the link happens, the less interesting it becomes… as it then
‘competes’ with openIMIS itself. Claim processing won’t be externalized (it is the very core
added value of openIMIS). Policies? Probably not… it is too intertwined with
(dependent/constrained) Claims. Persons & Families? Could be… provided that it provides for
the flexibility needed for openIMIS (a Family, with a ‘head’ person)... and not more: in that
system, can a Person be a member of several Families (stepfamilies,...)?

In other words, interfacing OpenCRVS (for Persons and Families), or the Facility and Product
Registries requires a dedicated analysis, to determine which are the impacts and associated
costs… but, at this stage, we have limited insights on the associated complexity.

Architecture Guidelines
The new openIMIS platform has been designed, from the start, for a modular architecture. In
order to prevent jeopardizing the benefits of the modular architecture, component additions (be
they custom code or integration strategy) must ​follow ​several guidelines​ which, while useful
to ensure a qualitative and aligned result, make development more time consuming​.
Some major highlights of the constraints on how development should be conducted:

- the loose coupling of modules via ​event-driven​ pattern… and this on backend side (via
django signals) and frontend side (via Redux dispatch/reducers);

- the ​contributions​ pattern to assemble final result in a coherent, yet flexible way… and
this on the backend side (cfr. the implemented ​GraphQL IOC pattern​) and frontend side
(using React HOC for ​Contributions​ and ​PublishedComponents​);

- localization, and not only for the frontend screens (where react-intl is put in place) but
also for date management (and very specifically the ​calendar hotswap​ mechanism in
place to cope with Nepali calendar); and

12

https://openimis.atlassian.net/wiki/spaces/OP/pages/586383361/Target+modular+Architecture
https://github.com/openimis/openimis-be_py/blob/7e2ee6af9c8241c4d7af76a9f5dc084929d3fdc2/openIMIS/openIMIS/schema.py#L1
https://github.com/openimis/openimis-fe-core_js/blob/e1c65c6f66d1dfa4aaf97a0c17c846c20c7f3076/src/components/Contributions.js#L1
https://github.com/openimis/openimis-fe-core_js/blob/e1c65c6f66d1dfa4aaf97a0c17c846c20c7f3076/src/components/PublishedComponent.js#L1
https://github.com/openimis/openimis-be-core_py/blob/5f695dee4524ab9e934c4bbd792de2417dae7720/core/apps.py#L1

- the centralized module configuration mechanism (​frontend​ and ​backend​) which allows
each implementation to unplug/plug modules, (de-)activated contributions, replace
reference (claim filter,...) components by country-specific ones.

Evaluation of the Requested Features

Improved Claim Review

The ​Improved Claim Review​ requirement describes two distinct mechanisms aiming at Claim
processing automation. Each mechanism can be addressed in isolation:

- A ​Configurable Claim Review Engine​, which can be used at Claim entry/submit to
validate a claim prior to any further treatment or, once the claim is successfully
submitted, for (automated) review / adjudication.

- An AI-based ​Automated Claim Adjudication​ support, including fraud detection.

Configurable Claim Review Engine
The new openIMIS architecture ​already integrates​ ​django-rules​: a rule engine primarily used for
access management… but which can clearly be used in ‘other contexts’ (incl. claim review).

The ​Claim module rewriting​ is performed according to the new architecture standard and
integrates events (django signals) at each claim status change. The django signals can (but
don’t have to) be “in transaction”: in other words we can plug a django-rules execution context
(with the rules to apply) and allow it to block the transition in case of rule violation or emit ‘alerts’.

In other words, thanks to the modularized architecture, we can plug a rule-engine based claim
validation module as an extension to current claim module. This module would allow countries
to dynamically change the validations performed (via rules) when a claim transits from entered
to submitted (and/or other transitions if useful):

13

https://github.com/openimis/openimis-fe_js/blob/b81634e7c2a3d9599a72c2f2984e99223080421c/src/ModulesManager.js#L1
https://github.com/openimis/openimis-be-core_py/blob/5f695dee4524ab9e934c4bbd792de2417dae7720/core/admin.py#L9
https://openimis.atlassian.net/wiki/spaces/OP/pages/887455749/Improved+Claims+Review
https://openimis.atlassian.net/wiki/spaces/OP/pages/887390237/Configurable+Claims+Review+Engine
https://openimis.atlassian.net/wiki/spaces/OP/pages/885522438/Automated+Claims+Adjudication
https://github.com/openimis/openimis-be_py/blob/52ec8b8622f8018f81542221f1cfe9c3e5a1efd0/requirements.txt#L15
https://github.com/dfunckt/django-rules
https://openimis.atlassian.net/wiki/spaces/OP/pages/807632949/Claim+module+scope

This is however not the end of the story​:

- Rules have to be configured by (admin) users, tested (errors in the rules can have a
significant impact), versionned (probably with dependence on several models: obviously
the claim… but probably also the insuree, the health facility,...).

- Once ‘live’, the rule engine will have to ‘explain’ errors (why it rejected a claim) to users
so that they can take corrective actions.

- Rules may have a real impact on performance: if claims are submitted in batch via the
FHIR API, the rule engine will trigger the rules validation on the complete dataset. So if
the rule requires the insuree gender, date of birth, the health facility type, available
services,... all necessary data must be loaded from database when rules get evaluated…
in batch (and just by a ‘subtle’ change in the validation rules by users).

14

In other words, adding a rule engine for claim review is a very low complexity task on the
technical side (ranking 1 if the one already in place is suitable, a little more if we want a nice UI
to define rules,...). It has a much greater impact on the implementers side however (ranking
5-6).

Note:​ following the same concept (intercept, in transaction, the claim state changes events
/signals), a simple (pure python code) country-specific module can be developed and added to
deployment. This already allows countries to specialize the validations, without the need for a
rule-based setup...

AI-based Automated Claim Adjudication
AI technologies can be seen as an extension of the rule-based mechanisms… and it ​could​ plug
onto the claim processing in the same way (intercept signals,...).
However the background technology, is by nature, even more data-consuming (and hence
performance impacting)... and probably better suited for batch (autonomous) mode.
Furthermore, while the rule engine can actually ‘explain’ to users why it rejected a claim
transition by pointing to the violated rule, machine learning algorithms are better suited in a ‘I
see something weird here, could you double check’ approach since they provide no further
explanation. In such an approach, the final decision will always be left to users. The obligation to
provide a justification (based on explicit rules) can be enforced legally, as is the case in Europe
under GDPR.

This must be refined, but it is potentially better suited to add a new state to claims, prior to being
‘approved’ in order to help depict the ‘fraud detection status’. This flag (transition) would be
taken in charge by the fraud detection batch. For countries not using the AI fraud detection
module a default (no-op / pass thru) implementation will also be created…

15

There will be two very distinct steps to realize this requirement:

1. open the “hook” for the fraud detection management in the current claim state diagram
2. configure/fine-tune/train the AI-based fraud detection module

Point 1 can be a rather easy task on both the technical and business sides (ranking 1-2): the
complexity will probably be to ensure that adding a claim state doesn’t have any side effect on
the existing code base… but since the module will have been ported to the new architecture, it
should not be a big issue.
Point 2 is more complex (ranking 4-5) and requires specific skills somewhere in between the
technical and business sides.

16

Configurable Workflows

Business Workflow management is a very large topic, ranging from simple task flow assignment
tasks (to user, automated process, bot, …) to “full scale” BPEL support with integrated
governance tool (who edit/test/rollout the business processes configurations), process
monitoring (SLA tracking, workload alerts,...), process optimization,...

The ​expressed need​ goes beyond a simple task management tool… so we believe it should not
be addressed via custom code but via (open source) tool integration. ​http://viewflow.io/​ (as
mentioned in the wiki) is a clear candidate, but there are others: ​https://ode.apache.org/​,
https://www.jbpm.org/​,...

Such tools can be integrated at various levels in openIMIS stack: from a pure backend module
that update entities in the background to user interface-integrated screens where users can be
alerted for actions (and directly access the page where the action has to be undertaken). The
required level of integration greatly influences the workload to be assigned to this work item.

Whatever Business Workflow management tool is chosen, its integration in openIMIS is clearly
better suited in the new architecture: thanks to its event-driven core concept, a business
process engine can autonomously react on “things that happen” (claim submitted, claim
rejected, policy invalidated,...) and trigger (mark progression in,...) the business processes.
Business process engines also usually require clear APIs to interact with the core components.
The GraphQL generic (built by IOC) REST API provided by the new architecture (and more
specifically its “mutations”) is particularly well suited for this.

17

https://openimis.atlassian.net/wiki/spaces/OP/pages/885653515/Configurable+Workflows
http://viewflow.io/
https://ode.apache.org/
https://www.jbpm.org/

Yet, since most of the modules are still in the .NET codebase (where offering events and
standardized API is not available), implementing a configurable business workflow engine will
be restricted to interact with migrated modules only.

For example, managing the payments (contributions) followup via a configurable workflow
engine would greatly be facilitated when the Contribution module is in place in the new
openIMIS.

Adding a configurable workflow management tool (in the new architecture) is not perceived as
technically complex in the new openIMIS software architecture. It will however generate much
more work on the business side: beside the (admin) user guides to configure the workflows
themselves, the (end) user guides will also have to somehow integrate the
(implementation-specific) workflow configurations.

With all these considerations in mind, we estimate this topic to be:
Technology rank: 2-3 (choosing the appropriate tool and plugging it)
Business rank: 6-7 (setup of workflow governance and documentation for it)

18

Claim Management Workflow
Beside Improved Claim Review section, the RFA also mention that Claims should be managed
via a configurable workflow. Since the Claim module is (or soon will be) migrated to the new
platform by the time this award is attributed and provided that the Configurable Workflows
module is part of the scope of this RFA, the Claim Management via the Workflow engine should
not require any additional technical work and should ‘only’ be a business configuration concern.

Beneficiary Enrollment Workflow

The “Beneficiary Enrollment” as a set of business processes to manage insurees, families and
their policies requires features from several modules: Persons & Families, Policies and
potentially Contributions.

To address the beneficiary enrollment,​ it is thus advised to first migrate these underlying
modules​, add the Configurable Workflow module and configure the beneficiary enrollment as a
managed process of that workflow engine.

With this approach, the Beneficiary Enrollment should not require any additional technical work
and should ‘only’ be a business configuration concern.

Insurance Scheme for Formal Sector

The ​Insurance schemes for Formal Sector​ requires data model modifications and the provided
documentation depicts two contradictory situations: the ​RfC_XX_support_of_formal
sector_20190701_PD.docx​ seems to link the Policy to the Employer, while the ​schema in the
comment​ describes the Policy as linked to the insuree (Person) in the scope of an Insurance
Product.

Whatever model is finally adopted, in the current model a Policy is bound to a Family,
composed of family members (the insurees). In other words for the tool to support formal sector
introduces a major change to the core Policy/Person model.
Many other core entities will also have to be extended (record wages,...) and most of the core
processes will have to change: renewals, valuations (and related contributions), specific
reporting for the Insurance Taker (aka. the employer).
We can also expect the business processes themselves to be rather different: probably more
based on bulk actions (the list of employees - and updates - as CSV,...) with a process by lot...
which more than likely requires an adapted UX (User Experience) design.

One major question (asked during the ​August 16, 2019 Q&A Call #1​) is the necessity (or not) to
have both models within the same openIMIS instance. We acknowledge that best would be to
have one openIMIS package able to support both ‘worlds’ in one instance. Yet, given the
necessary changes mentioned above, the risk this approach brings is quite high. A probably
more pragmatic (and cautious) approach with two instances would allow us to:

19

https://openimis.atlassian.net/wiki/spaces/OP/pages/819003487/Support+for+formal+sector+schemes
https://openimis.atlassian.net/wiki/download/attachments/819003487/RfC_XX_support_of_formal%20sector_20190701_PD.docx?version=1&modificationDate=1562310325013&cacheVersion=1&api=v2
https://openimis.atlassian.net/wiki/download/attachments/819003487/RfC_XX_support_of_formal%20sector_20190701_PD.docx?version=1&modificationDate=1562310325013&cacheVersion=1&api=v2
https://openimis.atlassian.net/wiki/download/attachments/819003487/Formal%20sector.png?version=4&modificationDate=1562584525562&cacheVersion=1&api=v2
https://openimis.atlassian.net/wiki/download/attachments/819003487/Formal%20sector.png?version=4&modificationDate=1562584525562&cacheVersion=1&api=v2
https://path.zoom.us/recording/play/fHA6w-nRiyzOpgULAnf3r36SdTjKcBkr9nry0_TUaQRDvY6CT81Cs9YG2B09-5Vh?continueMode=true

- Reuse (re-assemble) modules that can easily work for both “worlds” (maybe at the cost
of some additional parameterizing). These could include Claim processing, Medical
Items/Services (and Price lists), Location and Health Facility (and the related reports),…

- Re-think (either migrate/enhance… or delegate) the modules that are difficult to
“combine” (like Products, Policies and their , Enrollment process,...).

In the longer term (once all modules in new architecture and database are switched to profit
from JSONB flexibility at entity level) we will more easily:

- Merge modules from the informal and formal sector where relevant (profit from
formal sector product options in informal sector,...).

- Ensure non-conflicting cohabitation of modules that cannot (should not) be
merged.

In any case it is very difficult to evaluate this topic adequately and, should this topic be on high
priority, we suggest to start the work by establishing a clear roadmap.

The ranks for the development workload is to be considered high (rank 7) as well as the
business workload (rank 7).

Communication platform

The​ Nepali requirements​ include a ​communication platform towards the users, insurees and
beneficiaries​.
We strongly believe that communication towards users and customers (insurees and
beneficiaries... but also payers,...) are two separate things that should be addressed
independently.
Communication to users should be natively integrated in the Configurable Workflow
management solution.
What we will look at more closely though is how to manage the communication towards
customers.

Communicating with customers involves several dimensions:
- the content and representation of the communication: email subject/body, printed

document, SMS notification content, customer portal private message,...
- the technical platform(s) taking the communication in charge (email server, regular post

services, customer portal site,...)
- the workflow associated with the communication: from ‘fire and forget’ notifications to

complex communication with escalation process when communication didn’t result in
expected actions from targettee.

- the internal management of the produced communication items (archiving and auditing
capabilities,...)

Communication towards customers will also probably be very country specific and achieving
high flexibility is a must.

20

https://openimis.atlassian.net/wiki/spaces/OP/pages/884211818/Nepali+Requirements
https://openimis.atlassian.net/wiki/spaces/OP/pages/890634241/Notification+to+the+users+insurees+and+Beneficiaries
https://openimis.atlassian.net/wiki/spaces/OP/pages/890634241/Notification+to+the+users+insurees+and+Beneficiaries

As a result, one possible approach is to provide a small core generic module, within the
openIMIS platform, that would standardize the way each openIMIS module communicates with
“the outside world”. This standardized module would then be mapped to country-specific
platforms.
The triggering and follow-up of the communication would be implemented in the chosen
Configurable Workflow management solution which would include (wherever needed) interfaces
towards archiving (EDM) solutions,...

This would require us to split this step into separate work items:

a. Develop a module that would allow decoupling of openIMIS business modules
communications from its final form it is sent. Development of this module should follow
the contribution principle in place in the new openIMIS architecture and allow each
module (communication ‘extension’) to register its communication “templates” (customer
language sensitive “placeholder” email bodies,...).

b. Identify current (customer) communications and provide a default (email?)
representation.

c. Connect that module to one chosen (default) communication platform (email server?) via
the Configurable Workflow solution.

d. Connect the communication platform to an EDM solution.

a. and c. are purely technical work items with medium-to-high complexity: rank 4-5
b. is more business-oriented and requires to look beyond a single country-specific case to reach
effective flexibility. It is however not identified as a very complex activity: rank 1-2

21

d. is optional and is not perceived as very complex from a technical point of view (rank 1-2),
maybe a little more on the business point of view (reaching the right document
classification/taxonomy is often much more complex than expected).
Though this item is not dependent it will be more easily addressed after the Configurable
Workflow is in place.

(HL7 FHIR compatible) Payment module
Since payment management is not identified as primary focus area for the openIMIS platform,
the ​Integration of a Payment Layer​ would preferably be addressed by searching for an (open
source) system that could be delegated/interfaced directly to it. Ideally that system should be
based on HL7 FHIR financial resources.
However, if no such system exists, developing such a module as a standalone service would
greatly benefit from the new openIMIS development framework: the various mechanisms in
place (contributions, events,...) are clearly of interest in a design where the core
processing/logic has to be interfaced with (country-specific) external systems (using the same
architecture/reasoning as the Communication platform). Thanks to the new “containerized”
assembly/deployment​, such a standalone service could also be deployed as a micro-service,
with its own ​components assembly​ (lifecycle,...) and, as such, it will be reusable in environments
where openIMIS (as an insurance management product) is not involved.

22

https://openimis.atlassian.net/wiki/spaces/OP/pages/885719052/Integration+of+a+Payment+Layer
https://github.com/openimis/openimis-be_py/blob/52ec8b8622f8018f81542221f1cfe9c3e5a1efd0/Dockerfile#L1
https://github.com/openimis/openimis-be_py/blob/52ec8b8622f8018f81542221f1cfe9c3e5a1efd0/openimis.json#L1

In any case it is very difficult to provide an accurate evaluation for this topic and, should this
topic be of high priority, we suggest identifying a partner with experience in the field. The
development workload is most likely high (rank 7) as well as the business workload (rank 7).

Not covered
The ​Nepali requirements​ also include items of note (Sickness & Maternity benefit, customer
portals,...) which will require further scoping/analysis before determining the best fit solution.

Topic Dependencies and Suggested Roadmap
As stated in the current situation description, there are many good reasons to push migration of
legacy modules into the new platform. Our proposed approach is to be conservative on the
challenges proposed in the changes requested in this RFA and ensure most of the work to build
the base of the structure gets done to ease further adoptions and feature development.

Improved Claim Review via a Rule engine and/or AI-based algorithms are within reach: they can
already benefit from the work accomplished thanks to Notice C. and have no further
dependencies. The necessary budget to develop the solution is perceived as rather low… but
will clearly impact the community support work (Stream C).

The Configurable Workflow engine and related Claim Management / Beneficiary Enrollment
processes refactorings seems to be premature and its roll out would be best suited once the
underlying major core components are migrated to the new platform.

The Insurance Scheme for Formal Sector topic seems like it will be very challenging in the
current situation. To answer this need we see the necessity to change the core model which
would require a new code base split between the informal and formal sectors solutions. This
split, in a cartesian product with the current master (Tanzanian?)/Nepali code base is
problematic.

The new modular architecture would ease flexibility, but it is not yet in place for most of the
necessary modules (Products and Policies). Should the Insurance Scheme for Formal Sector be
considered a very high priority by the community, we would recommend reusing ‘as is’ where
possible (Location & Health Facilities, Medical Services and Items, Claims,...)... and restarting
from ‘scratch’ for the other modules (via delegation to external systems wherever it is possible).

The Communication Platform would clearly profit from a Workflow engine so it also seems
premature to address this topic.

Finally the (HL7 FHIR Compatible) Payment platform, if not developed as an interface with an
existing solution, will probably not fit in this RFA budget… However, it could be approached as

23

https://openimis.atlassian.net/wiki/spaces/OP/pages/884211818/Nepali+Requirements

an independent product (sharing the same technology stack as openIMIS) and be co-funded by
other programs where such a platform is also needed.

Stream C.
The work to be delivered along Stream C. is highly dependent on the choices made for Streams
A. and B. and will need to be totally aligned with what is currently being done as part of work on
Notice C.

One major challenge that needs to be anticipated is the move from an “all-in/standalone”
solution to more and more spread out/country-specific installations. This will be true on several
levels:

- Intra-module: with the contributions mechanism of the new platform as well as the use of
independent (/plugged on events) modules such as rule engines ...

- Inter-module: with the move towards more transversal/configurable tools such as the
Workflow Engine and the Communication Platform.

- Inter-systems: when openIMIS will delegate to external systems.
All the community support in place (from user guides to issue queues and knowledge base, wiki
documentation) has to be reviewed according to this need for flexibility.

Finally, our description of the current situation (above) also clearly indicates that any new
implementations should be approached very carefully, first gathering requirements to identify
the future flexibility needs (and integrate them, where/when possible in the rewriting). Should a
new opportunity become more concrete, a specific roadmap, probably putting migration of
existing modules at high priority, would need to be elaborated (with the associated budget).

24

