
Code Review Meeting, June/July 2018
Executive Summary

This report documents the results of a technical review of the software architecture and code base of the
openIMIS package. The review was done In June / July 2018 by a group of technical experts from GIZ,
SwissTPH and independent consultants to support the strategic and technical roadmaps for openIMIS.
Several influencing aspects were analysed for the whole application (crosscutting) or according to
functional areas of the application.

The reviewed functional areas, which could form a basis for a future modularisation, are defined as
Master Data Management, Insurance Product Definition, Insuree Management, Health Facility
Registration, Claiming, Client Feedback, and Analytics. The aspects for the analysis of each area
included the adaptability of the application to user defined business processes, data needs and local
settings such as the support for local languages. Another analysed aspect is complexity if one functional
area was to be isolated as an independent module.

While some functional areas do offer a good amount of flexibility within existing parameters (for example
product definitions), the implementation of user defined business processes or additional data needs
require the interventions of developers in all functional areas. Two languages are currently supported but
further development work is needed to fully support internationalization. While there are isolated aspects
in the current architecture (mobile apps, analytics), significant amount of work is needed to reveal the
dependencies between different functional areas and modularise the application.

The analysis of cross-cutting aspects related to security, authentication but also to the standards
expected from open source applications (technology stack, openness to collaboration, ease of installation,
development and code quality). There is no urgent need for an immediate “big-bang” rewrite to move
away from the currently used .NET Framework, but there are severe security issues that need to be
urgently addressed in the current code base. There are also issues in the public code repository which
can impact the perception of openIMIS by new developers, which includes a clean code-base split into
well-defined boundaries, regular releases with documented changelogs, improvements to the easiness of
setting up a development environment and packaging and distribution of new versions of the application.

In summary the results from the code review sessions support the overall strategy for the further
development of openIMIS. The review has helped identify the requirements for modularization of the
existing system without changing the entire code base, which in turn will allow for gradually introducing
functional modules based on a technology stack more in-line with the OpenHIE community. Additionally
there needs to be changes to foster the collaborative development expected by Open Source solutions.
The seamless and successive integration of new modules based on a different technology stack and their
distribution will require immediate action in the current code base. As a whole these changes will open a
path towards a more maintainable and modular system.

1 / 35

Code Review Meeting, June-July 2018

Content

1 Introduction
1.1 Background
1.2 Proposed Team
1.3 Suggested Reading

2 Evaluation of Cross-Cutting Topics
2.1 Security

2.1.1 Authentication
2.1.2 Authorisation
2.1.3 Data Transfer Encryption
2.1.4 Audit Logs
2.1.5 Data Protection (according to GDPR)

2.2 Localisation
2.2.1 Languages
2.2.2 Date Time Format / Calendar
2.2.3 Local Alphabets
2.2.4 Right-to-Left Writing Alignment
2.2.5 Conclusion

2.3 Tech stack
2.3.1 NET Framework
2.3.2 Visual Basic

2.4 Platform Independence
2.5 Open Source

2.5.1 Code Availability
2.5.2 Code Quality
2.5.3 Open Source
2.5.4 Documentation

2.6 Packaging / Distribution
2.6.1 Build
2.6.2 Packaging (Publishing)
2.6.3 Installation
2.6.4 Upgrades
2.6.5 Move an Instance to New Server

2.7 Testing
2.8 Contribution Model
2.9 Differences between Implementations

3 Evaluation by Functional Area
3.1 Master Data Management

3.1.1 Business Processes
3.1.2 Data Elements / Attributes

2

Code Review Meeting, June-July 2018

3.1.3 Localization
3.1.4 Modularisation

3.2 Insurance Product Management
3.2.1 Business Processes
3.2.2 Data Elements / Attributes
3.2.3 Localisation
3.2.4 Modularisation

3.3 Insuree Management
3.3.1 Business Processes
3.3.2 Data Elements / Attributes
3.3.3 Localisation
3.3.4 Modularisation

3.4 Registration with a Facility, Pre-authorization
3.4.1 Business Processes
3.4.2 Data Elements / Attributes
3.4.3 Localization
3.4.4 Modularisation

3.5 Claiming
3.5.1 Code Base
3.5.2 Business Processes

3.5.2.1 Data Flow:
3.5.2.2 Web Service Level
3.5.2.3 Processing at Server Level:
3.5.2.4 Submission:
3.5.2.5 Conclusion:

3.5.3 Data elements / Attributes
3.5.4 Localization
3.5.5 Modularisation

3.6 Feedback Loop (Insuree / Insurance Operator)
3.6.1 Code Base
3.6.2 Business Processes
3.6.3 Data Elements / Attributes
3.6.4 Localization
3.6.5 Modularisation

3.7 Analytics Functions
3.7.1 Code Base
3.7.2 Business Processes
3.7.3 Data Elements / Attributes
3.7.4 Localization
3.7.5 Modularisation

4 Summary
4.1 Cross Cutting Aspects

3

Code Review Meeting, June-July 2018

4.2 Functional Areas / Modules
4.3 Pain points

5 Appendix
5.1 TRM Suggestions for a “Way Forward”
5.2 Out of Scope for analysis - Interdependencies between Modules

4

Code Review Meeting, June-July 2018

1 Introduction

1.1 Background
openIMIS needs to evolve from MS IMIS to a generic standard product that can be fully
customized and scaled to the needs of a growing number of implementing organisations. We
need to realize a quick analysis of the source code considering its performance and persistence
in terms of developments foreseen in the technical roadmap. The idea is to maintain the MS
Visual Basic core while at the same time starting changes towards modularity and to explore
options for a successively adding new / replacing old modules on the basis of open source
technologies.

Therefore we need to analyze the following aspects:
● How future-proof is the actual core in this regard
● How long / to what extent does the core support existing technical and functional

requirements,
● If changes are needed, do these apply to the entire core, or only to parts among others.

The analysis will be very high level with short examples from real code on the basis of the
current masterversion in the github repository.

The review should cover all aspects from the suggestions for a way forward from the technical
roadmap, and is divided between evaluation of cross-cutting aspects and an evaluation per
functional area.

The following elements were identified as out of scope for the current review
● Link individual code files to functional areas (see here)
● Interdependencies between modules
● C# API

1.2 Proposed Team

Name Organisation Designation

Uwe Wahser GIZ HSP Kenya Coordination

Nirmal Dhakal GIZ Nepal Developer, Systems Architect

Saurav Bhattarai GIZ Nepal Developer, Systems Architect

Alex Vanobberghen SwissTPH Developer, Systems Architect

5

http://scanmail.trustwave.com/?c=6967&d=zrKf20NvPF5BZSJkomzCe-yeHiCZIm_-4ctIES-LoQ&u=http%3a%2f%2fVB%2eNET
https://docs.google.com/spreadsheets/d/1J4DmiXMCEf2Xzt80cSPQRphnaIm1kZkRWW-CEPkB1j0/edit#gid=943980910

Code Review Meeting, June-July 2018

Hans van Hoppe Exact Developer, Systems Architect

Nils Kaiser Freelance Open Source Consultant

Dragos Dobre SwissTPH Developer, Systems Architect

1.3 Suggested Reading
The following documents can serve for further reference and preparation:

● Technical Documentation
● Code Repository
● Health Insurance Board and Indicators from Nepal
● SonarQube analysis

6

https://github.com/openimis/master-version/blob/master/docs/specs/Functional_design_specification.pdf
https://github.com/openimis
http://shs.gov.np/dashboard/
http://shs.gov.np/dashboard/indicators.php
https://sonarcloud.io/organizations/openimis/projects

Code Review Meeting, June-July 2018

2 Evaluation of Cross-Cutting Topics

2.1 Security

2.1.1 Authentication
- Web Application:

- username and password authentication with session storage (code here)
- The password is encrypted using a symmetric key created by executing the SETUP-IMIS

stored procedure (code here)
- Issue: passwords can be retrieved through the database and through the web

application!
- Web Services: no authentication

- Issue: freely accessible by anyone
- Mobile applications:

- IMIS app: username and password for synchronisation of the data with the web services.
(Note: the IMIS app is a compilation of the former individual apps: Enrolment, Enquire,
Renewals, Feedback)

- Issue: Claim & Enquire apps: no authentication required to use the app, all local are
accessible

Score: 2

2.1.2 Authorisation
- Web Application:

- user role based authorisation for executing actions (i.e. add/edit/delete a family)
- The roles of the user is stored in the DB: binary encoded limiting the number of

possible roles (code here and code here)
- The possible actions and their associated rights are hardcoded in the code (code

here). In the application logic, checks are done according to the predefined rights
(code here)

- Issue: Only for the user interface and not on the business layer, there might be a
chance for malicious clients to bypass the authorisation

- Location based authorisation
- User can not access data from other location levels which he/she ’s assigned to

- Web Services:
- Issue: do not have authorisation

- Mobile applications
- IMIS app has built-in Enrollment Officer ID based authorisation (asks for EO id at startup)
- Username and password is required to synchronise data (Enrolment, Feedback, Photos)

with the central database
- Claim & Enquire apps: no authorisation

Score: 2

7

https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS/Default.aspx.vb#L37
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_DAL/UsersDAL.vb#L140
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_BL/UsersBL.vb#L461
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_BL/UsersBL.vb#L488
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_BL/UsersBL.vb#L44
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_BL/UsersBL.vb#L44
https://github.com/openimis/master-version/blob/4a5d2f8ef5a58292beac08c94a7977fd8e7340cc/Web%20application/Sources/IMIS/OverviewFamily.aspx.vb#L167

Code Review Meeting, June-July 2018

2.1.3 Data Transfer Encryption
- Web Application: supports SSL data transfer, managed by IIS
- Web Services and Mobile Applications:

- Supports SSL for form data transfer (to be confirmed code here)
- Use FTP for insuree photo transfer from mobile app to the WS (code here, replacement

with HTTP transfer is in progress)

As part of the web server configuration an implementer or administrator can ensure completely encrypted
data transfers. Only transfer of photos is running through an unencrypted FTP server.

Score: 1

2.1.4 Audit Logs
- Logins and logouts are registered in logs
- Every record in the database has a “ValidityFrom” and a “ValidityTo” field which can be used to

track changes that were made, when and by whom.
- Existing data records are not modified, only their validity status is updated. Any change generated

by a user action results in a new record.
- Issue: the non-functional fields ValidityFrom and ValidityTo are also used for business logic.
- Historization of data is available. But no real technical audit trail.

Score: 2

2.1.5 Data Protection (according to GDPR)
- Issue: Clients’ personal data, and medical history are stored in plain texts in the database
- Issue: No measures taken to comply with personal or medical data protection standards
- Issue: Data registered on the mobile devices are stored not encrypted

Score: 3

2.2 Localisation
The localitation management is configured on application level, which means that particular components
of an application uses the same configuration and the same functionality as the whole app. The
applications which integrate localisation functionality are the Web application and all Mobile applications.

2.2.1 Languages
● Web application:

○ Supports limited to 2 languages
○ The translation is handled through resource files and database tables (the latter being the

restriction to 2 languages: only 2 columns to handle 2 translations)
○ Changing translation resource needs recompiling the Web App and the Mobile Apps

● Web services:

8

https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Mobile%20applications/IMIS/app/src/main/java/tz/co/exact/imis/CallSoap.java#L63
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Mobile%20applications/IMIS/app/src/main/java/tz/co/exact/imis/UploadFile.java#L50

Code Review Meeting, June-July 2018

○ Languages are handled through the DB
○ Result codes are sent as integer

● Mobile application:
○ The same logic applies for retrieving the dropdown menus’ options from the database, as

mentioned above for the web application.
○ Needs to be translated separately, i.e. not using the same resource file as the web

application
○ Translation is managed through XML files, one for each language. English, Kiswahili, etc.

In order to add or change a language, the apps must be recompiled.

When the user logs into the web application, the user’s languageID is retrieved from the DB and is stored
in a cookie as a value (“en” or “fr”, etc) and used for all subsequent requests: code here.

The language resources are stored in separate files (one per language). These resource files contains all
UI labels and messages (error, notice, ...). From this perspective, there is no limitation in the number of
languages.

The translation tables in the DB can only handle 2 languages: English (default) and an alternative table.
When rendering the web page, the logic is to test the user’s language cookie’s value and choose the
appropriate language accordingly: code here.

Score: 2

2.2.2 Date Time Format / Calendar
● The date format expected by openIMIS system is DD/mm/YYYY. The installation procedure

explain how to change the server date format in order to match the required openIMIS format.
● Some functions use string operators on dates that only work on DD/mm/YYYY.
● Issue: Special calendar systems are not customizable (Nepali calendar was only integrated in the

Nepali version, only in the web-frontend)
● Issue: Not customisable

Score: 3

2.2.3 Local Alphabets
● Unicode support

Score: 1

2.2.4 Right-to-Left Writing Alignment
● Only left-to-right user interfaces
● Issue: Right-to-left not supported in the applications (web app and mobile apps)

Score: 3

9

https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20services/Sources/GetCredentials/ExactServices.asmx.vb#L1511
https://github.com/openimis/master-version/blob/master/Mobile%20applications/IMIS/app/src/main/res/values/strings.xml
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS/Global.asax.vb#L58
https://github.com/openimis/master-version/tree/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS/App_GlobalResources
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS/Insuree.aspx.vb#L169
http://openimis.readthedocs.io/en/latest/web_application_installation.html#globalisation

Code Review Meeting, June-July 2018

2.2.5 Conclusion

- The translation process is defined (by editing resource files), The language resource files
contains error messages and gui-labels. As the Web application is not separated in modules, this
translation system is applied on all functionalities of the Web application.
- Dropdown menus’ options are stored in the DB and limited to 2 languages.
- Editing these dropdown options requires direct access to the database
- As a result, the entire solution is limited to 2 languages

Total Score: 2

2.3 Tech stack

2.3.1 NET Framework
OpenIMIS was developed based on .NET Framework 3.5, which was released in 2007 and is currently1

on version 4.7.2, with 10 versions released since that release. IMIS’ web interface uses the Web Forms,
which is still available in the current .NET version 4.7.2. The application is known to run flawlessly in .NET
4.5. Different installations are using different versions. As .NET is backward-compatible, updating to the
newest version is easy.

Note: ASP.NET Core is a new cross-platform environment of the .NET family, which is a completely
different technology and is not compatible with .NET Framework.

2.3.2 Visual Basic
Most of the application is written in VB.net. While Visual Basic retains some popularity as a simple
language to learn, there is some indications that Microsoft itself rather sees the future in C# an F# rather
than VB. For example, while all 3 languages are supported in the .NET environment, VB only supports a
subset of functionality . VB is not regarded as a popular language choice among open source developers.2

General popularity of Visual Basic vs. other Web languages:

List VB Java C# JavaScript PHP Ruby Python

Tiobe 5 (,net)
and 19
(vb)

1 6 8 12 4

PYPL 14 2 5 3 4 11 1

Github - 3 8 1 5 4 2

2

https://www.infoworld.com/article/3051066/application-development/microsoft-c-visual-basic-are-now-set-t
o-diverge.html

1 https://en.wikipedia.org/wiki/.NET_Framework#Release_history

10

https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.1
https://www.tiobe.com/tiobe-index/
http://pypl.github.io/PYPL.html
https://stackify.com/popular-programming-languages-2018/
https://www.infoworld.com/article/3051066/application-development/microsoft-c-visual-basic-are-now-set-to-diverge.html
https://www.infoworld.com/article/3051066/application-development/microsoft-c-visual-basic-are-now-set-to-diverge.html
https://en.wikipedia.org/wiki/.NET_Framework#Release_history

Code Review Meeting, June-July 2018

2.4 Platform Independence
Achieving platform independence allows to reduce license costs, increase the reach of the application,
lowers the barrier for participation and increases future-readiness of the product.

For reference, examples of license costs required to run OpenIMIS today are:
● Microsoft Server:

○ Licenses are usually included in server purchase
● Microsoft SQL Server:

○ Web application runs on SQL express version (free), however using analytics requires a
full MSSQL license

○ Nepal: one-time purchase $2795 for 4 cores (Standard Edition 2016)
○ DRC: one-time 8698CHF Microsoft SQL Server 2016 Std Core min. 4 cores (was not

purchased, only a quote)

Platform dependent frameworks and tools:

Module Platform Cross-platform
approach

Complexity of
cross-platform

Web Application & Web
services

developed using the
.NET Framework 3.5
which is dependent of
Microsoft Windows
Server operating
systems

there are ways to run
.NET code on Linux,
however
https://www.quora.com/
Can-an-ASP-NET-webs
ite-be-hosted-on-a-Linu
x-server

High

Windows Services Background jobs are
implemented as
windows services that
only run on windows

Extract to
platform-independent
services (cron-jobs or
similar)

Low-Medium

Database Uses Microsoft SQL
Server. 84 Stored
procedures

Stored procedures
need to be extracted to
services in business
layer

Ensure compatibility of
DB queries with other
SQL servers

Medium-High

MSSQL can run on
linux or docker
https://docs.microsoft.c
om/en-us/sql/linux/sql-s
erver-linux-overview?vi
ew=sql-server-linux-201
7

Low

11

https://www.quora.com/Can-an-ASP-NET-website-be-hosted-on-a-Linux-server
https://www.quora.com/Can-an-ASP-NET-website-be-hosted-on-a-Linux-server
https://www.quora.com/Can-an-ASP-NET-website-be-hosted-on-a-Linux-server
https://www.quora.com/Can-an-ASP-NET-website-be-hosted-on-a-Linux-server
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-linux-2017

Code Review Meeting, June-July 2018

Analytics Uses the Integration
and Analytics services
from SQL Server.
(Needs Standard
version at least)

MS SQL Server can run
on Linux, but Analytics
services are not
supported on Linux

https://docs.microsoft.c
om/en-us/sql/linux/sql-s
erver-linux-release-note
s?view=sql-server-linux
-2017

High

Platform independent frameworks and tools:
● The Android mobile applications are developed using Java

Score: 2-3

2.5 Open Source
While Open Source by definition relates to the code being available publicly, a secondary aspect is the
collaborative nature of development.3

2.5.1 Code Availability
Update - This section is outdated as the repositories have been partially cleaned up and
reorganized upon sharing of the results.

The openIMIS application code is available on Github. However, the repository suffers from multiple
issues.

1. The github repo contains many different components with different dependencies and installation
procedures. A process to split into different repositories is in progress.

2. The initial github repo contains only ~8% of code, with the remaining 92% taken by build
artefacts, generated documentation as well as dependencies. New application based repositories
with clean source code are created.

3. Stored procedures are contained in the code repository as part of a Database backup file, but not
as code which can reflect changes over time

4. Branches are not intuitive and it is unclear how those related to each other.

These issues make it hard for external developers to understand the code and thus will likely have a
negative effect on adoption and participation.

The following table offers an overview of the code repository by application modules extracted from this
spreadsheet. Note that the stored procedures are not included in this overview.

module submodule # of files # of lines

3 See https://en.wikipedia.org/wiki/Open-source_model

12

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes?view=sql-server-linux-2017
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-release-notes?view=sql-server-linux-2017
https://github.com/openimis/master-version
https://docs.google.com/spreadsheets/d/1J4DmiXMCEf2Xzt80cSPQRphnaIm1kZkRWW-CEPkB1j0/edit#gid=943980910
https://docs.google.com/spreadsheets/d/1J4DmiXMCEf2Xzt80cSPQRphnaIm1kZkRWW-CEPkB1j0/edit#gid=943980910
https://en.wikipedia.org/wiki/Open-source_model

Code Review Meeting, June-July 2018

webapp webapp 192 91598

webapp-bi 61 4428

webapp-bl 50 7402

webapp-dal 58 10316

webapp-en 22 28306

mobileapp 42 31852

mobileapp-claims 86 12228

mobileapp-enrollment 75 10267

mobileapp-enquire 74 9919

webservice-getcredentials 22 6182

mobileapp-renewal 17 3401

analytics 3 2655

winservice-backup 30 2247

winservice-effectivesms 15 1706

winservice-renewal 14 1693

winservice-assignphoto 14 1484

winservice-feedback 15 1175

1 33

Grand Total 791 226892

Score: 2

2.5.2 Code Quality
SonarCloud (static quality analysis) revealed a number of issues:
https://sonarcloud.io/organizations/openimis/projects

13

https://sonarcloud.io/organizations/openimis/projects

Code Review Meeting, June-July 2018

Webapp code is organized by application layers, instead of functional areas. This does not allow to
understand how different parts of the application relate to each other. However, the business functional
behaviours and the database access functions are split by entity related classes.

Score: 2

2.5.3 Open Source
While the main requirement of Open Source is the public availability of code and a license that allows for
modifications, Open Source projects have numerous requirements which will defined their perception by
external developers.

We decided to follow a checklist to guide an assessment of different criteria important for Open Source
projects. It can be found at: https://afonsopacifer.github.io/open-source-checklist/. Click on the individual
items for get additional resources.

Item Result Notes

Add a README.md file containing all the basic
information about your project.

No Only a pointer to installation
instructions. See a template here:
https://gist.github.com/PurpleBooth/1
09311bb0361f32d87a2

Create a CONTRIBUTING.md file containing all the
necessary information so that other developers can
help you.

No No Contributing file. Development file

Add a .gitignore file containing everything you do not
want versioning .

No Git repository is polluted by build
artefacts.

Select and add the best license for your project. Yes LICENSE.md

Choose a methodology versioning and follow. No Legacy versioning methodology is
enforced in Tanzania, but not yet
reviewed for openIMIS. (2 Releases
on github are Tanzania-specific)

Create a roadmap to make clear the course of the
project.

No Current roadmap is a vision
document, with high-level goals.
However there is no roadmap with
estimable, self-contained tasks /
features.
(There is a placeholder on the Wiki,
will be filled by technical advisory
group)

Document your project in the best possible way. Yes User Manual

Describe your Releases clearly and objectively or
create a CHANGELOG.md file and do it there.

No No changelog file

Use badges to indicate the status of your project. No

14

https://afonsopacifer.github.io/open-source-checklist/
https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/README
https://gist.github.com/PurpleBooth/109311bb0361f32d87a2
https://gist.github.com/PurpleBooth/109311bb0361f32d87a2
https://github.com/blog/1184-contributing-guidelines
https://github.com/blog/1184-contributing-guidelines
https://github.com/blog/1184-contributing-guidelines
https://help.github.com/articles/ignoring-files/
https://help.github.com/articles/ignoring-files/
http://choosealicense.com/
http://semver.org/
https://github.com/openimis/master-version/releases
https://en.wikipedia.org/wiki/Technology_roadmap
https://en.wikipedia.org/wiki/Technology_roadmap
https://openimis.atlassian.net/wiki/spaces/OP/pages/40763442/Product+roadmap
http://blog.smartbear.com/careers/13-things-people-hate-about-your-open-source-docs/
http://keepachangelog.com/
http://keepachangelog.com/
http://shields.io/

Code Review Meeting, June-July 2018

Configure and add a .editorconfig. Partial However, VS project files are
included.

When necessary do not hesitate to create a website
for your project. Enjoy and publish with github pages.

Yes

Write automated tests No

Integrate your tests a Continuous Integration service. No

Provide your project in the appropriate package
manager. (EX: bower, npm, etc...)

N/A No packages provided in project
managers nor github, sources and
compiled application is committed
into github repository

Score: 2

2.5.4 Documentation
Different documentation is available

Type Description Rating (coverage / quality)

User Manual Describes each button / feature
visible on the web application
front-end.

Web application is well covered
Mobile application is not covered

Data model & architecture Functional Design Specification,
where the database model is
described, along with some
business processes within
openIMIS

Web application is well covered
Mobile application is partly
covered
Web services are covered in a
limited way

Code comments Code comments, incl.
description of classes,
interfaces, functions and
parameters

Comments are rare both in code
and class / method signatures.

Installation Manual Describes installation and
configuration procedures

Web application
Web services
Windows services
Mobile application / compilation

Score: 2

2.6 Packaging / Distribution

2.6.1 Build
The IMIS Web Application and Web Services are built using Visual Studio tooling. A build with MS build
tools is possible, but currently not used. Dependencies are fetched via NuGet.

15

http://editorconfig.org/
https://pages.github.com/
https://pages.github.com/
https://www.inflectra.com/Ideas/Topic/Testing-Methodologies.aspx
https://travis-ci.org/
https://en.wikipedia.org/wiki/List_of_software_package_management_systems
https://en.wikipedia.org/wiki/List_of_software_package_management_systems

Code Review Meeting, June-July 2018

The application currently does not use continuous integration service which would allow a test / staging4

instance to be deployed automatically, and help ensure timely integration of code into the main codebase.
There are continuous integration services available to build .NET application.

The output of build is in DLL format and depends whether a debug or release build is used as well as the
processor architecture.

The mobile applications that are build using gradle. For new instances of openIMIS, the mobile
applications have to be recompiled with the new Web Services URL.

A complete rebuild of the application takes approx a minute for the web application, same for the mobile
application (20GB RAM, i5).

Score; 2

2.6.2 Packaging (Publishing)
The application is distributed via the github release page, i.e. installation files are found in zip-files that a
user would need to install. The releases are manually created and uploaded to Github.

● The database structure can be restored from the backup file. It is not possible to extract all SQL
scripts from the database because the IMIS-SETUP stored procedure is protected.

● The Web application and the Web services can be published and easily installed on a Windows
Server platform

● The Windows Services are packaged with setup files
● The Mobile applications are packaged in APK files, however, they need to be re-compiled for

every new instance because the address of the web server needs to be hard coded.

There is currently no documentation of the packaging / publishing process. Nepal is currently not using
the github release page as Nepal is not yet using the master-version.

Score; 2

2.6.3 Installation
The installation process is manual, no automatic installation via a self-installing package (Setup) is
provided at the moment - except for Windows services.

The installation of OpenIMIS takes approx half a day for a new developer. An subsequent upgrade to a
new version takes about 1 hour.

Documentation does not include complete instructions to install the analysis module, including importing
cubes.

4 https://en.wikipedia.org/wiki/Continuous_integration

16

https://gradle.org/
https://en.wikipedia.org/wiki/Continuous_integration

Code Review Meeting, June-July 2018

Installing a new instance (excluding the analytics module) can be done by a system administrator using
the installation guide without technical assistance. However, note that the application will require some
initial configuration (e.g. create users, locations, health facilities).

Score; 2

2.6.4 Upgrades
The demo instance of OpenIMIS is also updated manually after every release.

There is no instructions for upgrading an instance. Upgrading an instance requires a downtime.

Database upgrades are made using the provided SQL scripts (from one version to the next).

Score; 2

2.6.5 Move an Instance to New Server

Moving an instance from a server to another is rather trivial assuming that the Microsoft server and SQL
server are installed and on the same version on both servers. In that case, only the database and
application files need to be imported into the new instance.

This is also assuming that the application URL remains the same, otherwise the mobile applications
would have to be redeployed.

Score; 2

2.7 Testing
● The current version of openIMIS is only tested manually, there is no test cases / scenarios

provided to support manual testing.
● No automatic testing, there are no unit tests.

Score; 3

2.8 Contribution Model
3 github users have contributed to the codebase (SwissTPH and GIZ Nepal). Tanzanian developers send
the sources to a test server where Swiss TPH can retrieve them and upload them on GitHub.

Tanzania and Nepal are currently contributing to different branches, which are to be merged into the
master version.

Score; 2

17

Code Review Meeting, June-July 2018

2.9 Differences between Implementations
Goal is to highlight customizations that are specific to the different countries.

Implementation Summary (# of users, version used,
environment)

Specific features or
customizations

Nepal Using legacy IMIS version(since April 2016).
Windows Server 2012 R2
.NET Framework 4.0
MsSQL Server 2016 Standard Edition
Users:
-3256 Enrolment Assistants through Android
phones
-228 Health Facilities submitting claims through
web interface
-115 HIB District Staff through web and mobile
phones
-5 Claim reviewers in HIB, Kathmandu
-5 IT Administrators as backstoppers
- 2 developers

Using Nepal-specific branch and
testing master-version.

Configuration:
-Cyclic enrollment
-Mandatory first service point

Code changes:
-Custom reports
-Some changes in user interface
to make it more user friendly
-Inclusion of Nepali Calendar on
user interface

- Analytics Dashboard
http://www.shs.gov.np/dashboar
d/ is used instead of MS SQL
analytics (due to license costs).

Tanzania Using the master version (18.0.0)
Windows Server 2012 R2
.NET Framework 4.0
MsSQL Server 2016 Standard Edition
Implemented in 3 regions (23 districts) and
currently being rolled out nationally to all 23
regions of Tanzania mainland
Users:
-3000+ Enrolment Assistants through Android
phones (and offline)
- 900+ Health Facilities submitting claims
through web interface or offline
- 4 IT Administrators as backstoppers
- 6 developers.

Using master-version.

Configuration:
- validate insurance number

Code change
- None

There are additional small-scale deployments in Cameroon, DRC and Chad.

18

http://www.shs.gov.np/dashboard/
http://www.shs.gov.np/dashboard/
https://github.com/openimis/web_app_vb/blob/3bd669ecd70d246972d13aff7e3f8f16bb081283/IMIS_BL/EscapeBL.vb#L32
https://openimis.atlassian.net/wiki/spaces/OP/pages/40665130/Implementations

Code Review Meeting, June-July 2018

3 Evaluation by Functional Area
The functional areas were taken from the roadmap document. For each functional area and each review
aspect, a score for the complexity of the necessary changes is given (compare 6.8 Summary)

3.1 Master Data Management

3.1.1 Business Processes
● Build configuration

○ Languages
○ Mobile Apps WS URL

● Installation configuration
○ IIS configuration
○ Database configuration
○ FTP setups
○ DB connection
○ Windows Services config
○ Web and mobile applications defaults in DB

● System setup (could be updated over time)
○ Locations
○ Facilities, payment methods, services and goods, price lists, insurance products
○ Users, Enrolment Officers, Claim Administrators, Payers
○ Mobile application master data

Master data are only being updated / synchronised via Web interface, flat files, api, xml-files. There are no
customizable workflows for the introduction of new medical services, medical items, health facilities
(accreditation process) etc. Products can be configured via the interface related to supported services
and medicine.
Score: 4

3.1.2 Data Elements / Attributes
● Build configuration

○ Languages to be used within the system➝ English and local language (see Localisation
section)

○ Configuration: the URL of the Web Services is hardcoded in the code and any new
releases or instances must replace the URL and recompile the applications (code here)

● Installation configuration
○ Connection string for DB access (doc here)
○ Location for backup, SMS Gateway configuration on Windows Services (doc here)
○ Defaults configuration (see page 149 section 6.1.39 in TechDoc)

■ Stored in DB tables tblIMISDefaults and tblIMISDetaulsPhone
■ Used on system runtime

○ Attribute customization
■ Stored in the DB tables for family relations, professions, ...

19

https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Mobile%20applications/IMIS/app/src/main/java/tz/co/exact/imis/General.java#L22
http://openimis.readthedocs.io/en/latest/web_application_installation.html#edit-the-web-config
http://openimis.readthedocs.io/en/latest/web_application_installation.html#install-windows-services
https://github.com/openimis/master-version/blob/master/docs/specs/Functional_design_specification.pdf

Code Review Meeting, June-July 2018

■ Must be related to Localisation
● System setup

○ Locations management
■ One DB table (tblLocations)
■ Uses the Composite Pattern: Region➝ District➝ Municipality➝ Village
■ Uses SQL Server Views to simulate DB tables for the 4 levels (i.e. method to get

districts)
■ Hardcoded in the application➝ no remove or add a location level (code here)

○ Facilities, payment methods, services and goods, price lists
■ Each data type is stored in separate DB tables
■ Hardcoded in the application and difficult to add fields

○ User management
■ Each account type is stored in a different table (tblUsers, tblOfficer,

tblClaimAdmin, tblPayer)
■ Only Users from tblUsers can login to the Web Application (see Security section)
■ No link between the account types (an Enrolment Officer must be registered in

Users and in Officers)
■ Users defined roles➝ duplication of role definition?

○ Mobile Apps
■ Master data for IMIS app is retrieved on first run from the WS (code here)
■ Contains the setup and DB language translation data

All attributes for master data are hardcoded into the program code. There are additional, unused
attributes exist in database tables that can be used for custom defined attributes, but the need to be
coded into the user interfaces.
Score: 4

3.1.3 Localization
● Names etc. of master data can only be defined in one language

Localisation is handled according to 4.2 Localization.
Score: 3

3.1.4 Modularisation
● The Master data is used by other parts of the system and do not depends on other

subsystems.The code for manipulating master data is concentrated in several code files, there is
no manipulation of master data done in other modules (e.g. Claiming, etc). Master data are
accessible via shared database access.

● Access from other system (synchronisation etc) via api is not yet possible.
Score: 3

20

https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_DAL/LocationsDAL.vb#L52
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_DAL/LocationsDAL.vb#L52
https://github.com/openimis/master-version/blob/master/Web%20application/Sources/IMIS/Locations.aspx
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20services/Sources/GetCredentials/ExactServices.asmx.vb#L1498

Code Review Meeting, June-July 2018

3.2 Insurance Product Management

3.2.1 Business Processes
● Business processes for Insurance products are hardcoded, but product instances can be created,

deleted and heavily parameterized via the web interface (covered services or medical products).
● Master data can be configured:

○ maximum number of beneficiaries per family,
○ Contribution Amount, Insurance Period, Waiting Periods, Discounts, Cyclic enrolment

options (number of cycles, cycle start date etc)

There is no workflow as such for defining new product generations with different parameters than the
current defined set.
Score: 3

3.2.2 Data Elements / Attributes
● Data elements are not customizable from openIMIS Interface
● New elements/ attributes can be added through code/ database changes only

All attributes for beneficiaries are hardcoded in the database tables and the programm code.
Score: 4

3.2.3 Localisation
● Product names etc. can only be defined in one language

Localisation is handled according to 4.2 Localization.
Score: 3

3.2.4 Modularisation
● The product data is used by other parts of the system and do not depends on other

subsystems.The code for manipulating master data is concentrated in product management code
files, there is no manipulation of master data done in other modules (e.g. Claiming, Enrolment,
etc). Product data are accessible via shared database access.

● Access from other system (synchronisation etc) via api is not yet possible.
Score: 3

3.3 Insuree Management

3.3.1 Business Processes
● Enrolment

○ A member of family is defined as head of the family, all other members are assigned to
that family

21

Code Review Meeting, June-July 2018

○ Enrollment Officer’s unique code is predefined and entered in IMIS
○ Officer’s username and password is required in enrollment app to synchronize mobile

stored data with IMIS server
○ Insuree’s Photo and data is taken through the IMIS App and sent to Server (current

status as version 17.5.15)
■ Previous Enrolment App took photo and sent it to the Server ; during data entry

respective photo is linked with the Insuree ID (using CHFID)
○ Paper based enrollment form (Nepal)/register (Tanzania) is filled by Enrollment Officer
○ Data entry Clerk collects the forms from Officers (as per old apps) and enter the data in

IMIS (in the new apps data can be sent directly from the phone by enrolment officer)
(http://132.148.151.32/Family.aspx)

○ ID card with QR Code is provided to Insuree.
■ QR Code pre-printed on card - graphical representation of InsureeID

○ Master data like Confirmation type, group type, Relationship, profession, Education,
Identification Type are not configurable through web interface or API

● Renewal
○ The systems send the renewal information to the Enrolment Officers
○ The time period is defined (within which HHs are expiring) for which the system sends the

list to the enrolment officer such that the enrolment officer has a sort of “check list” of HHs
that they need to renew from their area

○ Renewals are done through Mobile Apps by Enrolment officers and through Web app by
Data Entry Clerk

Enrolment currently includes registration of a beneficiary as a person/family and registering that person
for a specific insurance scheme. The basic business process is hard coded, values of single attributes
can be changed manually. Eligibility for an insurance product is validated automatically via hardcoded
business rules dependent on the insurance product. There is no workflow as such.
Score: 4

3.3.2 Data Elements / Attributes
● Data elements are not customizable from openIMIS Interface

○ Fixed number of data elements (tblInsuree)
■ 28 fields
■ Most are already used by the system for logical flow
■ No provision to add new (eg. If some scheme operator requires ‘color of eyes’

during enrolment, the only option would be to use one of the existing 28 fields)
● New elements/ attributes can be added through code/ database changes only
● The maximum benefit ceiling (value of services in the insurance period) is dependent on a

combination of base ceiling + additional ceiling for members beyond threshold.

All attributes for beneficiaries are hardcoded in the database tables and the programm code.
Score: 4

3.3.3 Localisation
Localisation is handled according to 4.2 Localization.
Score: 3

22

Code Review Meeting, June-July 2018

3.3.4 Modularisation
Enrolment -> Insuree Database <- Verification at facilities
Enrolment <-Product (eg. thresholds defined in product would affect enrolment contribution amount)
Enrolment App (Android)-> Enrolment (Web Services) -> Insuree Database <- Enrolment (Web interface)

Enrollment queries a number of master data tables directly from the database (code here for attaching a
product to a family➝ creating policies). The ceiling for claims is a calculated value from maximum ceiling
and threshold from product definition minus sum of claims done.in the family/policy table. After creation of
API’s for the claims process, insuree management could be quite modular, but affects a number of other
modules.

Stored procedures are used when enrolling via the mobile app.
Score: 3

3.4 Registration with a Facility, Pre-authorization

3.4.1 Business Processes
● Registration

○ Beneficiary goes to Facility➝ Shows card➝ Facility uses Enquire app (source here) to
identify via QR code or insuree’s number

○ Alternative way is to use IMIS web application
○ Ideally online, but also possible offline
○ The enquiry request provides information on client identity data(Name, Gender and

DOB), picture and eligibility (policy status, remaining ceiling, first service point etc. if
applicable as per the configured Product/benefit package) configuration)

● Pre-authorisation: same as registration with facility, no extra process

Registration with a facility is hardcoded in the server module and inquired by the mobile app. The
evaluation is based on the insurance product and current status of the insuree and is hardcoded in a
stored database procedure. The workflow in the stored procedure is not customizable.

Offline use of the app needs master data on an SD card allowing for a limited check on validity date of the
policy and the picture of the insuree only.
Score: 4

3.4.2 Data Elements / Attributes
The data available for the encounter at the facility is hardcoded in the app and on server side and cannot
be changed. Different organisation might require additional information to verify an eligible person.
Score: 4

3.4.3 Localization
● The mobile app needs to re-compiled for each language before installing the app on a phone

according to 4.2 Localization.

23

https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS/Policy.aspx.vb#L391
https://github.com/openimis/master-version/tree/master/Mobile%20applications/Enquire

Code Review Meeting, June-July 2018

Score: 3

3.4.4 Modularisation
● This functionality access information from Enrolment and Master data subsystems.
● URL to server is hardcoded in the app.
● Stored procedures are used a lot.

Score: 3

3.5 Claiming

3.5.1 Code Base
In the Web application

Front end classes:
Business logic classes in IMIS_BL project:

● ClaimAdminBL.vb
● ClaimDedRemBL.vb
● ClaimItemsBL.vb
● ClaimServicesBL.vb
● ClaimsBL.vb

Data Access Layer classes in IMIS_DAL project:
● ClaimsDAL.vb
● BatchRunDAL.vb
● ClaimDedRemDAL.vb

SQL Server stored procedures:
● uspSubmitClaims
● uspSubmitSingleClaim
● uspClaimSelection
● uspProcessClaims
● uspProcessSingleClaimStep1
● uspProcessSingleClaimStep2

3.5.2 Business Processes
The claiming process allows the healthcare provider to be reimbursed for services provided to a patient
by the patient’s insurer.

In short, the claim process includes the following steps:
1. Claim Entry
2. Claim Submission
3. Integrity checks
4. Medical review (optional)
5. Valuation of claims (at individual level)
6. Batch run (generates reports for payment at facility level)

24

https://github.com/openimis/master-version/blob/master/Web%20application/Sources/IMIS_BL/ClaimAdminBL.vb
https://github.com/openimis/master-version/blob/master/Web%20application/Sources/IMIS_BL/ClaimDedRemBL.vb
https://github.com/openimis/master-version/blob/master/Web%20application/Sources/IMIS_BL/ClaimItemsBL.vb
https://github.com/openimis/master-version/blob/master/Web%20application/Sources/IMIS_BL/ClaimServicesBL.vb
https://github.com/openimis/master-version/blob/master/Web%20application/Sources/IMIS_BL/ClaimsBL.vb
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_DAL/ClaimsDAL.vb
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_DAL/BatchRunDAL.vb
https://github.com/openimis/master-version/blob/0dcde53efed0323e85175e030b9c4500075e10f1/Web%20application/Sources/IMIS_DAL/ClaimDedRemDAL.vb

Code Review Meeting, June-July 2018

From the Functional Design Specification, see section 5.3 (page 64) for the logic applied for the claim
submission and section 5.4 for the claim valuation process.

These steps are partly customisable through configuration screens (for steps 1, 2, 3), and through
parameters defined at the insurance product level (for steps 4 and 5). See this product page for example:
http://132.148.151.32/Product.aspx?p=4. The definition of each field can be found here:
http://openimis.readthedocs.io/en/latest/user_manual.html#product-page

It is worth noting that this does not constitute a business rule engine / manager ; any new claiming logic or
new date element would require new development.

3.5.2.1 Data Flow:
Claims can be sent via the web application or the mobile application. For both options, claims’ data are
submitted and stored in the database, until the batch process is run at a later stage (end of the reporting
period).
Phone data flow: XML file (one per claim) -> Web service -> MSSQL stored procedure
Online web application: Direct call to the stored procedure
Offline web application: XML file (bulk export) -> Web service -> MSSQL stored procedure

25

http://132.148.151.32/Product.aspx?p=4
http://132.148.151.32/Product.aspx?p=4
http://openimis.readthedocs.io/en/latest/user_manual.html#product-page
http://openimis.readthedocs.io/en/latest/user_manual.html#product-page

Code Review Meeting, June-July 2018

3.5.2.2 Web Service Level
(http://132.148.151.32/services/exactservices.asmx)
At the web services level, the following functions are used:

- isValidClaim

3.5.2.3 Processing at Server Level:
Here the stored procedures handling the claiming processes (to be viewed in SQL Server Management
studio)

● uspSubmitClaims
● uspSubmitSingleClaim
● uspClaimSelection
● uspProcessClaims
● uspProcessSingleClaimStep1
● uspProcessSingleClaimStep2

3.5.2.4 Submission:
● One claim is checked (integrity) through uspSubmitClaims.
● It is also pre-processed i.e. deductables or ceilling are checked: uspProcessSingleClaimStep1.
● Processing:
● The claim processing takes a batch of claims, and loops through them one by one.

3.5.2.5 Conclusion:
● Most of the business processes related to claims are hard coded into the system and no

aspects/parameters are modifiable through a GUI.
● Like every other process of the system, the claiming process is part of the core logic, and cannot

be used on its own (by a third party system for example).
● There are different data flows to support different operational modes (mobile phones, online,

offline). These flows introduce some code redundancy, which could be removed for ease of
maintenance.

● The claiming process is rather complex overall, and was developed iteratively based on users’
requests. This is reflected in the code, also means that it is not very flexible in case any new data
element or logic needs to be added, the whole claiming process needs reviewing.

Score: 4

3.5.3 Data elements / Attributes
As described in the above business processes, numerous tables / data fields are being checked at
different stages ; see diagram 2, 3, 4 and 5 (from page 158 onwards) from the Functional Design
Specification.

No additional attributes can be added to the claim objects.

26

http://132.148.151.32/services/exactservices.asmx
https://github.com/openimis/master-version/blob/master/Web%20services/Sources/GetCredentials/ExactServices.asmx.vb#L306

Code Review Meeting, June-July 2018

Score: 4

3.5.4 Localization
● The mobile app needs to re-compiled for each language before installing the app on a phone

according to 4.2 Localization.
Score: 3

3.5.5 Modularisation

All parameters that are related to claiming are dealt with by product definition, item, and service definition
(master data).
Claim submitting and processing is handled within stored procedures which are isolated and not
dependant on other business logic. The results of these stored procedures are stored in tables, which are
then referred to by other processes, for example the inquiry of the insuree's status. Changing the claiming
module would then also impact other modules.

Score: 3

3.6 Feedback Loop (Insuree / Insurance Operator)

3.6.1 Code Base

Feedback front end classes:
Feedback stored procedures:

3.6.2 Business Processes

Feedback objectives:
● Increasing satisfaction
● Revealing fraud

Current process:
- At the claiming stage, the medical reviewer can flag a number / proportion of claims for feedback
- The feedback requests then become available through the mobile app to the field officer to collect

feedback from the insurees.
- The above feedback prompts can received by SMS or through mobile data via the mobile app.

For more information about the Feedback please see section 8.4. Feedback & Renew application (page
190) from the Technical Documentation.

Score: 4

27

https://github.com/openimis/master-version/blob/master/docs/specs/Functional_design_specification.pdf

Code Review Meeting, June-July 2018

3.6.3 Data Elements / Attributes

No additional data elements can be added to the feedback objects.

Score: 4

3.6.4 Localization
● The mobile app needs to re-compiled for each language before installing the app on a phone

according to 4.2 Localization.
Score: 3

3.6.5 Modularisation
The feedback functions are part of the mobile app as an isolated class which retrieves a list of feedback
requests from the server. The data are isolated in one table in the database. There is also a nightly batch
run and a link to the sms system.
The feedback module is optional function and is linked to the claim module: one feedback per selected
claim.

Score: 2

3.7 Analytics Functions

3.7.1 Code Base

Web application report templates:
● Web application/Sources/IMIS/Reports

3.7.2 Business Processes

How can a user create own fixed format (standard) reports?

Tanzania: OLAP reporting in Excel needs BI functionalities that need to be licensed (not free). Are data
structures and ETL processes part of the package?

Nepal is using external tools for reporting (Google PHP Libraries) in addition to the fixed reports.

Score: 4

3.7.3 Data Elements / Attributes
Creation of user defined reports is very interlinked with the involved business processes.
Score: 4

28

https://github.com/openimis/master-version/tree/master/Web%20application/Sources/IMIS/Reports

Code Review Meeting, June-July 2018

3.7.4 Localization
For the Web Application reports, localisation is handled according to 4.2 Localization.
OLAP reporting in Excel is cannot be localised to languages.

Score: 3

3.7.5 Modularisation

Score: 2

29

Code Review Meeting, June-July 2018

4 Summary

4.1 Cross Cutting Aspects
Scoring:
1: Implemented
2: Partially implemented
3: Not implemented

Cross Cutting Aspect Score

Security 2

Authentication 2

Authorisation 2

Data Transfer Encryption 1

Audit Logs 2

Data protection 3

Localisation 2

Languages 2

Dates 3

Local Alphabets 1

Right-To-Left Alignment 3

Tech stack 2

Open Source 2

Code availability 2

Code Quality 2

Open Source Checklist 2

Documentation 2

Packaging / Distribution 2

Build 2

Packaging (publishing) 2

30

Code Review Meeting, June-July 2018

Installation 2

Upgrades 2

Move to New Server 2

Testing 3

Contribution Model 2

Differences between Implementations n/a

4.2 Functional Areas / Modules
Scoring:
1: Nothing to be done
2: Impact only on one application (e.g. user registration of web app)
3: Impact on multiple application(s) of the system (e.g. claim management on web app and web service)
4: Complete module needs to be redesigned

Functional Area Bus. Proc. Data Elem. Loc. Mod.

Master Data 4 4 3 3

Insurance Product 3 4 3 3

Insurees 4 4 3 3

Registration 4 4 3 3

Claiming 4 4 3 3

Feedback 4 4 3 2

Analytics 4 4 3 2

31

Code Review Meeting, June-July 2018

4.3 Pain points
The following pain points have been collected during the code review.

Pain point Possible mitigation

Versioned code does not reflect
all local changes

Ensure that every country runs on a checked in version, even if
those are different branches

Different country implementations
maintained in branches means
that code is diverging

Ensure that a basic customization mechanism is pushed to the
master version (via configuration) and that country
implementations are submitting pull-requests to master

Implementation is bound to
Microsoft SQL (See 2.4 Platform
Independence)

Non-core modules: Ensure that most accesses to data layer are
done via API calls rather than database.
Core modules: Evaluate cost of porting data access layer to a
database-independent
Stored procedures: Redevelop stored procedures as a service
with an API.

Code is developed using
outdated technology

Incrementally replace non-core modules with new technologies,
while development teams are gaining experience with those
technologies

Deployment of a new OpenIMIS
server instance is complex

Develop a windows-based Docker containerized version of
OpenIMIS

Key workflows are not
customizable

The application should provide clear extension points so that
workflows (for ex. Claimes or registration) can be customized.
This customization could happen in Code or via an interface
(more complexity)

Security relevant issues (see
issues in 2.1.1 Authentication,
2.1.2 Authorisation and 2.1.3
Data Transfer Encryption) Fixes needed

Audit logs are couple with
business logic (see 2.1.4 Audit
Logs) Decouple audit logs from business logic.

Data registered on mobile
devices is not encrypted Ensure that personal data in database on device is encrypted.

Data privacy issues - see 2.1.5
Data Protection (according to
GDPR)

Extensive data audit needed to suggest feasible solutions for
encryption of personal data.

Special calendar systems are not
customizable

Support custom calendars throughout the application (Nepal
support is only in front-end)

32

Code Review Meeting, June-July 2018

Right-to-left not supported in the
applications (web app and mobile
apps)

Add support for right-to-left interface in both web app and mobile
app.

Code repository issues (partially
resolved), see 2.5.1 Code
Availability

Develop code repository guidelines (no build artefacts in repo,
ensure separate modules are in separate repositories)

No automated tests or continuous
integration can impact software
quality and development speed.

Develop tests for new modules, set up continuous integration
service.

Documentation is incomplete Add documentation for mobile application

Manual packaging process

Packaging process should be automatic (connected to
continuous integration above) and should not require manual
intervention

Product names can only be in
one language Allow for product name and description in multiple languages

33

Code Review Meeting, June-July 2018

5 Appendix

5.1 TRM Suggestions for a “Way Forward”
From Technical Roadmap, Version 5.2, based on the OpenIMIS workshop from February 2018
Summarized suggestion by SwissTPH Comment OpenIMIS Initiative

1. OpenIMIS should be developed based on the
current IMIS, using MS VBA.

Agreed in the sense that for the time being all existing core
functions should remain in Microsoft Technology. For new
functions it should be analysed case-by-case whether new
elements can be used (micro services, open source,
existing libraries), thereby stepwise modularizing the core.

2. IMIS will be modified in such a way that it will
support besides MS SQL Server database
also other databases (e.g. open source or
license free database). This will also allow
running on Linux OS and gives partners
technology choices. Migration tools will be
prepared.

Agreed, based on specific customer demands.
(This has a lower priority)

3. The data warehouse of IMIS will be integrated
with alternate front–end besides the currently
used front-end MS Excel. Priority would be
DHIS2, but it should also be possible for other
reporting/DWH/BI products.

Agreed. Pro-actively pursuing DHIS2 integration
corresponds to requests of different partners. Still,
vendor-independent approach is important.

4. The current RESTful API layer will be
completed (and made fully compatible with the
relevant standards) in order to facilitate full
replacement of web form functionality in case it
is needed for ensuring online communication
with adjacent software systems.

Agreed. It has been a new information for us, that IMIS
uses RESTful API.

5. A data format in conformance with HL7 FHIR
will be provided for data exchange on claims
as an alternative to the current native XML
based format.

Agreed. In a later step, it can be analyzed how
micro-service based FHIR libraries could also contribute to
long-term core modularization.

6. Data formats based on CSV and/or Excel will be
offered for initial loading of selected registers
(it is already available but only for some
registers and it is not published yet).

Agreed. This will speed up implementation and help
transfer maintenance responsibility to countries. Also
continuous data exchange with specialized registers, such
as facility lists, can be explored in line with openHIE
approaches.

7. The existing mechanism of exit points and
escape procedures will be enriched to allow
country specific modification of more aspects
of the business logic in case an explicit
configuration on the user level is not
advantageous for a specific case.

Agreed. This seems like a promising approach to allow
countries to inject further functionality. Since this can
deeply affect core stability, the procedures should be well
structured and documented.
(This has a lower priority)

34

Code Review Meeting, June-July 2018

5.2 Out of Scope for analysis - Interdependencies between Modules
This exercise would require to assign the code files of the core (webapp) by functional area.

This anaylsis could be done using Code Maps
https://docs.microsoft.com/en-us/visualstudio/modeling/create-layer-diagrams-from-your-code

Ideally, the result would be a matrix of the interdependencies between functional areas

Master
Data

Insurance
Product

Enrolment Registrat
ion

Claiming Feedback Analytics

Master
Data

-

Insurance
Product

-

Enrolment -

Registrati
on

-

Claiming -

Feedback -

Analytics -

35

https://docs.microsoft.com/en-us/visualstudio/modeling/create-layer-diagrams-from-your-code

