

openIMIS – Security Recommendations

8/15/2022

SecurityONE

SecurityONE

 Page 2

Document details:

Title Current Security Recommendations Review

Project Resources Alexandru MOTOC

Project Timeline 08/04/2022 – 08/15/2022

Document History

Version Date Author Comments

1.0 08/12/2022 Alexandru Motoc Creation
1.1 08/15/2022 Alexandru Motoc Review

SecurityONE

 Page 3

Contents

Purpose and scope ... 4
Security Requirements ... 5

1 Architecture, Design and Threat Modelling ... 5
2 Authentication .. 9
3 Session Management .. 14
4 Access Control .. 16
5 Validation, Sanitization and Encoding ... 17
6 Stored Cryptography .. 20
7 Error Handling and Logging .. 21
8 Data Protection ... 23
9 Communication .. 25
10 Malicious Code ... 26
11 Business Logic .. 27
12 Files and Resources .. 28
13 API and Web Service ... 29
14 Configuration .. 31
15 Other requirements ... 33

SecurityONE

 Page 4

Purpose and scope

The purpose of this document is to secure the openIMIS web application.

The objectives of this document are to ensure that:

• the implementation or modification of web applications does not lead to the introduction
of insecure code which may compromise the confidentiality or integrity of information
assets

• baseline web application security controls are implemented to safeguard against
unauthorised modification of web content

• software development processes incorporate adequate security so as to prevent adverse
impact to company information technology infrastructure

• a whole approach for developing secure web applications is established.

The scope of this review is to make a list of security requirements for openIMIS web application.

This list has been done having best practices in mind, as defined by Open Web Application
Security Project (OWASP).

The security requirements recommendations are based on OWASP Application Security
Verification Standard 4.0.3. OWASP ASVS 4.0.3 is released under the Creative Commons
Attribution ShareAlike 3.0 license.

OWASP is an open community dedicated to enabling organizations to develop, purchase, and
maintain applications that can be trusted. All of the OWASP tools, documents, forums, and
chapters are free and open to anyone interested in improving application security.

This document contains the most important security requirements for the openIMIS web
application, and we recommend that all requirements classified as Required to be implemented
as much as possible by the openIMIS's development team.

Conventions

Term Description
Required Means that the definition is an absolute requirement.
Recommended Means that there may exist valid reasons in particular circumstances to ignore

a particular item, but the full implications must be understood and carefully
weighed before choosing a different course.

SecurityONE

 Page 5

Security Requirements

1 Architecture, Design and Threat Modelling

Architecture is not an implementation, but a way of thinking about a problem that has potentially many different answers, and no one single "correct"
answer.
A specific implementation of a web application is likely to be revised continuously throughout its lifetime, but the overall architecture will likely rarely
change but evolve slowly.
In this chapter, the security requirements cover off the primary aspects of any sound security architecture: availability, confidentiality, processing
integrity, non-repudiation, and privacy. Each of these security principles must be built in and be innate to all applications. It is critical to "shift left",
starting with developer enablement with secure coding checklists, mentoring and training, coding and testing, building, deployment, configuration, and
operations, and finishing with follow up independent testing to assure that all of the security controls are present and functional.

Subcategory # Requirement Assessment
1.1 Secure Software
Development Lifecycle

1.1.1 Use a secure software development lifecycle that addresses security in all stages of development. Required

 1.1.2 Use a threat modeling for every design change or sprint planning to identify threats, plan for
countermeasures, facilitate appropriate risk responses, and guide security testing.

Required

 1.1.3 All user stories and features contain functional security constraints, such as "As a user, I should be
able to view and edit my profile. I should not be able to view or edit anyone else's profile"

Required

 1.1.4 Documentation and justification of all the application's trust boundaries, components, and
significant data flows.

Required

 1.1.5 Definition and security analysis of the application's high-level architecture and all connected remote
services.

Required

 1.1.6 Implementation of centralized, simple (economy of design), vetted, secure, and reusable security
controls to avoid duplicate, missing, ineffective, or insecure controls.

Required

 1.1.7 The availability of a secure coding checklist, security requirements, guideline, or policy to all
developers and testers.

Required

SecurityONE

 Page 6

Subcategory # Requirement Assessment
1.2 Authentication
Architecture

1.2.1 Use of unique or special low-privilege operating system accounts for all application components,
services, and servers.

Required

 1.2.2 The communications between application components, including APIs, middleware and data layers,
are authenticated. Components should have the least necessary privileges needed.

Required

 1.2.3 The application uses a single vetted authentication mechanism that is known to be secure, can be
extended to include strong authentication, and has sufficient logging and monitoring to detect
account abuse or breaches.

Required

 1.2.4 All authentication pathways and identity management APIs implement consistent authentication
security control strength, such that there are no weaker alternatives per the risk of the application.

Required

1.3 Access Control
Architecture

1.3.1 Trusted enforcement points, such as access control gateways, servers, and serverless functions,
enforce access controls. Never enforce access controls on the client.

Required

 1.3.2 The application uses a single and well-vetted access control mechanism for accessing protected data
and resources. All requests must pass through this single mechanism to avoid copy and paste or
insecure alternative paths.

Required

 1.3.3 The attribute or feature-based access control is used whereby the code checks the user's
authorization for a feature/data item rather than just their role. Permissions should still be allocated
using roles.

Required

1.4 Input and Output
Architecture

1.4.1 The input and output requirements clearly define how to handle and process data based on type,
content, and applicable laws, regulations, and other policy compliance.

Required

 1.4.2 The serialization is not used when communicating with untrusted clients. If this is not possible,
ensure that adequate integrity controls (and possibly encryption if sensitive data is sent) are
enforced to prevent deserialization attacks including object injection.

Required

 1.4.3 The input validation is enforced on a trusted service layer. Required
 1.4.4 The output encoding occurs close to or by the interpreter for which it is intended. Required
1.5 Cryptographic
Architecture

1.5.1 There is an explicit policy for management of cryptographic keys and that a cryptographic key
lifecycle follows a key management standard.

Required

 1.5.2 The consumers of cryptographic services protect key material and other secrets by using key vaults
or API based alternatives.

Required

SecurityONE

 Page 7

Subcategory # Requirement Assessment
 1.5.3 All keys and passwords are replaceable and are part of a well-defined process to re-encrypt

sensitive data.
Required

 1.5.4 The architecture treats client-side secrets--such as symmetric keys, passwords, or API tokens--as
insecure and never uses them to protect or access sensitive data.

Required

1.6 Errors, Logging and
Auditing Architecture

1.6.1 A common logging format and approach is used across the system. Required

 1.6.2 The logs are securely transmitted to a preferably remote system for analysis, detection, alerting, and
escalation.

Required

1.7 Data Protection and
Privacy Architecture

1.7.1 All sensitive data is identified and classified into protection levels. Required

 1.7.2 All protection levels have an associated set of protection requirements, such as encryption
requirements, integrity requirements, retention, privacy and other confidentiality requirements, and
that these are applied in the architecture.

Required

1.8 Communications
Architecture

1.8.1 The application encrypts communications between components, particularly when these
components are in different containers, systems, sites, or cloud providers.

Required

 1.8.2 The application components verify the authenticity of each side in a communication link to prevent
person-in-the-middle attacks. For example, application components should validate TLS certificates
and chains.

Required

1.9 Malicious Software
Architecture

1.9.1 A source code control system is in use, with procedures to ensure that check-ins are accompanied
by issues or change tickets. The source code control system should have access control and
identifiable users to allow traceability of any changes.

Required

1.10 Business Logic
Architecture

1.10.1 The definition and documentation of all application components in terms of the business or security
functions they provide.

Required

 1.10.2 All high-value business logic flows, including authentication, session management and access
control, do not share unsynchronized state.

Required

 1.10.3 All high-value business logic flows, including authentication, session management and access
control are thread safe and resistant to time-of-check and time-of-use race conditions.

Recommended

SecurityONE

 Page 8

Subcategory # Requirement Assessment
1.11 Secure File Upload
Architecture

1.11.1 The user-uploaded files - if required to be displayed or downloaded from the application - are
served by either octet stream downloads, or from an unrelated domain, such as a cloud file storage
bucket. Implement a suitable Content Security Policy (CSP) to reduce the risk from XSS vectors or
other attacks from the uploaded file.

Required

1.12 Configuration
Architecture

1.12.1 The segregation of components of differing trust levels through well-defined security controls,
firewall rules, API gateways, reverse proxies, cloud-based security groups, or similar mechanisms.

Required

 1.12.2 The binary signatures, trusted connections, and verified endpoints are used to deploy binaries to
remote devices.

Required

 1.12.3 The build pipeline warns of out-of-date or insecure components and takes appropriate actions. Required
 1.12.4 The build pipeline contains a build step to automatically build and verify the secure deployment of

the application, particularly if the application infrastructure is software defined, such as cloud
environment build scripts.

Required

 1.12.5 The application deployments adequately sandbox, containerize and/or isolate at the network level to
delay and deter attackers from attacking other applications, especially when they are performing
sensitive or dangerous actions such as deserialization.

Required

 1.12.6 The application does not use unsupported, insecure, or deprecated client-side technologies such as
NSAPI plugins, Flash, Shockwave, ActiveX, Silverlight, NACL, or client-side Java applets.

Required

SecurityONE

 Page 9

2 Authentication

Authentication is the act of establishing, or confirming, someone (or something) as authentic and that claims made by a person or about a device are
correct, resistant to impersonation, and prevent recovery or interception of passwords.

Subcategory # Requirement Assessment
2.1 Password Security 2.1.1 The user set passwords are at least 12 characters in length (after multiple spaces are combined). Required
 2.1.10 There are no periodic credential rotation or password history requirements. Required
 2.1.11 The "paste" functionality, browser password helpers, and external password managers are

permitted.
Required

 2.1.12 The user can choose to either temporarily view the entire masked password, or temporarily view the
last typed character of the password on platforms that do not have this as built-in functionality.

Required

 2.1.2 The passwords of at least 64 characters are permitted, and that passwords of more than 128
characters are denied.

Required

 2.1.3 The password truncation is not performed. However, consecutive multiple spaces may be replaced
by a single space.

Required

 2.1.4 Any printable Unicode character, including language neutral characters such as spaces and Emojis
are permitted in passwords.

Required

 2.1.5 The users can change their password. Required
 2.1.6 The password change functionality requires the user's current and new password. Required
 2.1.7 The passwords submitted during account registration, login, and password change are checked

against a set of breached passwords either locally (such as the top 1,000 or 10,000 most common
passwords which match the system's password policy) or using an external API. If using an API a
zero knowledge proof or other mechanism should be used to ensure that the plain text password is
not sent or used in verifying the breach status of the password. If the password is breached, the
application must require the user to set a new non-breached password.

Required

 2.1.8 A password strength meter is provided to help users set a stronger password. Required
 2.1.9 There are no password composition rules limiting the type of characters permitted. There should be

no requirement for upper or lower case or numbers or special characters.
Required

SecurityONE

 Page 10

Subcategory # Requirement Assessment
2.2 General
Authenticator Security

2.2.1 The anti-automation controls are effective at mitigating breached credential testing, brute force, and
account lockout attacks. Such controls include blocking the most common breached passwords, soft
lockouts, rate limiting, CAPTCHA, ever increasing delays between attempts, IP address restrictions,
or risk-based restrictions such as location, first login on a device, recent attempts to unlock the
account, or similar. Verify that no more than 10 failed attempts per hour is possible on a single
account.

Required

 2.2.2 The use of weak authenticators (such as SMS and email) is limited to secondary verification and
transaction approval and not as a replacement for more secure authentication methods. Verify that
stronger methods are offered before weak methods, users are aware of the risks, or that proper
measures are in place to limit the risks of account compromise.

Required

 2.2.3 Secure notifications are sent to users after updates to authentication details, such as credential
resets, email or address changes, logging in from unknown or risky locations. The use of push
notifications - rather than SMS or email - is preferred, but in the absence of push notifications, SMS
or email is acceptable as long as no sensitive information is disclosed in the notification.

Required

 2.2.4 The impersonation resistance against phishing, such as the use of multi-factor authentication,
cryptographic devices with intent (such as connected keys with a push to authenticate), or at higher
AAL levels, client-side certificates.

Recommended

 2.2.5 Where a Credential Service Provider (CSP) and the application verifying authentication are
separated, mutually authenticated TLS is in place between the two endpoints.

Recommended

 2.2.6 The replay resistance through the mandated use of One-time Passwords (OTP) devices,
cryptographic authenticators, or lookup codes.

Recommended

 2.2.7 The intent to authenticate by requiring the entry of an OTP token or user-initiated action such as a
button press on a FIDO hardware key.

Recommended

2.3 Authenticator
Lifecycle

2.3.1 The system generated initial passwords or activation codes SHOULD be securely randomly
generated, SHOULD be at least 6 characters long, and MAY contain letters and numbers, and
expire after a short period of time. These initial secrets must not be permitted to become the long
term password.

Required

 2.3.2 The enrollment and use of user-provided authentication devices are supported, such as a U2F or
FIDO tokens.

Required

 2.3.3 The renewal instructions are sent with sufficient time to renew time bound authenticators. Required

SecurityONE

 Page 11

Subcategory # Requirement Assessment
2.4 Credential Storage 2.4.1 The passwords are stored in a form that is resistant to offline attacks. Passwords SHALL be salted

and hashed using an approved one-way key derivation or password hashing function. Key
derivation and password hashing functions take a password, a salt, and a cost factor as inputs when
generating a password hash.

Required

 2.4.2 Verify that the salt is at least 32 bits in length and be chosen arbitrarily to minimize salt value
collisions among stored hashes. For each credential, a unique salt value and the resulting hash
SHALL be stored. (C6)

Required

 2.4.3 If PBKDF2 is used, the iteration count SHOULD be as large as verification server performance will
allow, typically at least 100,000 iterations.

Required

 2.4.4 If bcrypt is used, the work factor SHOULD be as large as verification server performance will
allow, with a minimum of 10.

Required

 2.4.5 An additional iteration of a key derivation function is performed, using a salt value that is secret and
known only to the verifier. Generate the salt value using an approved random bit generator and
provide at least the minimum security strength. The secret salt value SHALL be stored separately
from the hashed passwords (e.g., in a specialized device like a hardware security module).

Required

2.5 Credential Recovery 2.5.1 A system generated initial activation or recovery secret is not sent in clear text to the user. Required
 2.5.2 The password hints or knowledge-based authentication (so-called "secret questions") are not

present.
Required

 2.5.3 The password credential recovery does not reveal the current password in any way. Required
 2.5.4 Shared or default accounts are not present (e.g. "root", "admin", or "sa"). Required
 2.5.5 If an authentication factor is changed or replaced, that the user is notified of this event. Required
 2.5.6 The forgotten password, and other recovery paths use a secure recovery mechanism, such as time-

based OTP (TOTP) or other soft token, mobile push, or another offline recovery mechanism.
Required

 2.5.7 If OTP or multi-factor authentication factors are lost, that evidence of identity proofing is performed
at the same level as during enrollment.

Required

2.6 Look-up Secret
Verifier

2.6.1 The lookup secrets can be used only once. Required

 2.6.2 The lookup secrets have sufficient randomness (112 bits of entropy), or if less than 112 bits of
entropy, salted with a unique and random 32-bit salt and hashed with an approved one-way hash.

Required

 2.6.3 The lookup secrets are resistant to offline attacks, such as predictable values. Required

SecurityONE

 Page 12

Subcategory # Requirement Assessment
2.7 Out of Band Verifier 2.7.1 The clear text out of band authenticators, such as SMS or PSTN, are not offered by default, and

stronger alternatives such as push notifications are offered first.
Required

 2.7.2 The out of band verifier expires out of band authentication requests, codes, or tokens after 10
minutes.

Required

 2.7.3 The out of band verifier authentication requests, codes, or tokens are only usable once, and only for
the original authentication request.

Required

 2.7.4 The out of band authenticator and verifier communicates over a secure independent channel. Required
 2.7.5 The out of band verifier retains only a hashed version of the authentication code. Required
 2.7.6 The initial authentication code is generated by a secure random number generator, containing at

least 20 bits of entropy (typically a six digital random number is sufficient).
Required

2.8 One Time Verifier 2.8.1 The time-based OTPs have a defined lifetime before expiring. Required
 2.8.2 The symmetric keys used to verify submitted OTPs are highly protected, such as by using a

hardware security module or secure operating system based key storage.
Required

 2.8.3 The approved cryptographic algorithms are used in the generation, seeding, and verification of
OTPs.

Required

 2.8.4 The time-based OTP can be used only once within the validity period. Required
 2.8.5 If a time-based multi-factor OTP token is re-used during the validity period, it is logged and

rejected with secure notifications being sent to the holder of the device.
Required

 2.8.6 The physical single-factor OTP generator can be revoked in case of theft or other loss. Ensure that
revocation is immediately effective across logged in sessions, regardless of location.

Required

 2.8.7 The biometric authenticators are limited to use only as secondary factors in conjunction with either
something you have and something you know.

Recommended

2.9 Cryptographic
Verifier

2.9.1 The cryptographic keys used in verification are stored securely and protected against disclosure,
such as using a Trusted Platform Module (TPM) or Hardware Security Module (HSM), or an OS
service that can use this secure storage.

Required

 2.9.2 The challenge nonce is at least 64 bits in length, and statistically unique or unique over the lifetime
of the cryptographic device.

Required

 2.9.3 The approved cryptographic algorithms are used in the generation, seeding, and verification. Required

SecurityONE

 Page 13

Subcategory # Requirement Assessment
2.10 Service
Authentication

2.10.1 The intra-service secrets do not rely on unchanging credentials such as passwords, API keys or
shared accounts with privileged access. [OS assisted]

Required

 2.10.2 If passwords are required for service authentication, the service account used is not a default
credential. (e.g. root/root or admin/admin are default in some services during installation). [OS
assisted]

Required

 2.10.3 The passwords are stored with sufficient protection to prevent offline recovery attacks, including
local system access. [OS assisted]

Required

 2.10.4 The passwords, integrations with databases and third-party systems, seeds and internal secrets, and
API keys are managed securely and not included in the source code or stored within source code
repositories. Such storage SHOULD resist offline attacks. The use of a secure software key store,
hardware TPM, or an HSM is recommended for password storage. [OS assisted]

Required

SecurityONE

 Page 14

3 Session Management

One of the core components of any web-based application or stateful API is the mechanism by which it controls and maintains the state for a user or
device interacting with it. Session management changes a stateless protocol to stateful, which is critical for differentiating different users or devices.
Ensure that a verified application satisfies the following high-level session management requirements:

• Sessions are unique to each individual and cannot be guessed or shared.
• Sessions are invalidated when no longer required and timed out during periods of inactivity.

Subcategory # Requirement Assessment
3.1 Fundamental
Session Management
Security

3.1.1 The application never reveals session tokens in URL parameters. Required

3.2 Session Binding 3.2.1 The application generates a new session token on user authentication. Required
 3.2.2 The session tokens possess at least 64 bits of entropy. Required
 3.2.3 The application only stores session tokens in the browser using secure methods such as appropriately

secured cookies or HTML 5 session storage.
Required

 3.2.4 The session tokens are generated using approved cryptographic algorithms. Required
3.3 Session Termination 3.3.1 The logout and expiration invalidate the session token, such that the back button or a downstream

relying party does not resume an authenticated session, including across relying parties.
Required

 3.3.2 If authenticators permit users to remain logged in, re-authentication occurs periodically both when
actively used or after an idle period. [12 hours or 15 minutes of inactivity, with 2FA optional]

Required

 3.3.3 The application gives the option to terminate all other active sessions after a successful password
change (including change via password reset/recovery), and that this is effective across the
application, federated login (if present), and any relying parties.

Required

 3.3.4 The users are able to view and (having re-entered login credentials) log out of any or all currently
active sessions and devices.

Required

3.4 Cookie-based
Session Management

3.4.1 The cookie-based session tokens have the 'Secure' attribute set. Required

 3.4.2 The cookie-based session tokens have the 'HttpOnly' attribute set. Required

SecurityONE

 Page 15

Subcategory # Requirement Assessment
 3.4.3 The cookie-based session tokens utilize the 'SameSite' attribute to limit exposure to cross-site request

forgery attacks.
Required

 3.4.4 The cookie-based session tokens use the "__Host-" prefix so cookies are only sent to the host that
initially set the cookie.

Required

 3.4.5 If the application is published under a domain name with other applications that set or use session
cookies that might disclose the session cookies, set the path attribute in cookie-based session tokens
using the most precise path possible.

Required

3.5 Token-based Session
Management

3.5.1 The application allows users to revoke OAuth tokens that form trust relationships with linked
applications.

Required

 3.5.2 The application uses session tokens rather than static API secrets and keys, except with legacy
implementations.

Required

 3.5.3 The stateless session tokens use digital signatures, encryption, and other countermeasures to protect
against tampering, enveloping, replay, null cipher, and key substitution attacks.

Required

3.6 Federated Re-
authentication

3.6.1 The Relying Parties (RPs) specify the maximum authentication time to Credential Service Providers
(CSPs) and that CSPs re-authenticate the user if they haven't used a session within that period.

Recommended

 3.6.2 The Credential Service Providers (CSPs) inform Relying Parties (RPs) of the last authentication
event, to allow RPs to determine if they need to re-authenticate the user.

Recommended

3.7 Defenses Against
Session Management
Exploits

3.7.1 The application ensures a full, valid login session or requires re-authentication or secondary
verification before allowing any sensitive transactions or account modifications.

Required

SecurityONE

 Page 16

4 Access Control

Authorization is the concept of allowing access to resources only to those permitted to use them. Ensure that a verified application satisfies the
following high level requirements:

• Persons accessing resources hold valid credentials to do so.
• Users are associated with a well-defined set of roles and privileges.
• Role and permission metadata is protected from replay or tampering.

Subcategory # Requirement Assessment
4.1 General Access
Control Design

4.1.1 The application enforces access control rules on a trusted service layer, especially if client-side access
control is present and could be bypassed.

Required

 4.1.2 All user and data attributes and policy information used by access controls cannot be manipulated by
end users unless specifically authorized.

Required

 4.1.3 The principle of least privilege exists - users should only be able to access functions, data files, URLs,
controllers, services, and other resources, for which they possess specific authorization. This implies
protection against spoofing and elevation of privilege.

Required

 4.1.4 The access controls fail securely including when an exception occurs. Required
4.2 Operation Level
Access Control

4.2.1 The sensitive data and APIs are protected against Insecure Direct Object Reference (IDOR) attacks
targeting creation, reading, updating and deletion of records, such as creating or updating someone
else's record, viewing everyone's records, or deleting all records.

Required

 4.2.2 The application or framework enforces a strong anti-CSRF mechanism to protect authenticated
functionality, and effective anti-automation or anti-CSRF protects unauthenticated functionality.

Required

4.3 Other Access
Control Considerations

4.3.1 The administrative interfaces use appropriate multi-factor authentication to prevent unauthorized use. Required

 4.3.2 The directory browsing is disabled unless deliberately desired. Additionally, applications should not
allow discovery or disclosure of file or directory metadata, such as Thumbs.db, .DS_Store, .git or .svn
folders.

Required

SecurityONE

 Page 17

Subcategory # Requirement Assessment
 4.3.3 The application has additional authorization (such as step up or adaptive authentication) for lower

value systems, and / or segregation of duties for high value applications to enforce anti-fraud controls
as per the risk of application and past fraud.

Required

5 Validation, Sanitization and Encoding

The most common web application security weakness is the failure to properly validate input coming from the client or the environment before directly
using it without any output encoding. This weakness leads to almost all of the significant vulnerabilities in web applications, such as Cross-Site
Scripting (XSS), SQL injection, interpreter injection, locale/Unicode attacks, file system attacks, and buffer overflows.
Ensure that a verified application satisfies the following high-level requirements:

• Input validation and output encoding architecture have an agreed pipeline to prevent injection attacks.
• Input data is strongly typed, validated, range or length checked, or at worst, sanitized or filtered.
• Output data is encoded or escaped as per the context of the data as close to the interpreter as possible.

Subcategory # Requirement Assessment
5.1 Input Validation 5.1.1 The application has defenses against HTTP parameter pollution attacks, particularly if the

application framework makes no distinction about the source of request parameters (GET, POST,
cookies, headers, or environment variables).

Required

 5.1.2 The frameworks protect against mass parameter assignment attacks, or that the application has
countermeasures to protect against unsafe parameter assignment, such as marking fields private or
similar.

Required

 5.1.3 All input (HTML form fields, REST requests, URL parameters, HTTP headers, cookies, batch files,
RSS feeds, etc) is validated using positive validation (allow lists).

Required

 5.1.4 The structured data is strongly typed and validated against a defined schema including allowed
characters, length and pattern (e.g. credit card numbers, e-mail addresses, telephone numbers, or
validating that two related fields are reasonable, such as checking that suburb and zip/postcode
match).

Required

SecurityONE

 Page 18

Subcategory # Requirement Assessment
 5.1.5 The URL redirects and forwards only allow destinations which appear on an allow list, or show a

warning when redirecting to potentially untrusted content.
Required

5.2 Sanitization and
Sandboxing

5.2.1 All untrusted HTML input from WYSIWYG editors or similar is properly sanitized with an HTML
sanitizer library or framework feature.

Required

 5.2.2 The unstructured data is sanitized to enforce safety measures such as allowed characters and length. Required
 5.2.3 The application sanitizes user input before passing to mail systems to protect against SMTP or IMAP

injection.
Required

 5.2.4 The application avoids the use of eval() or other dynamic code execution features. Where there is no
alternative, any user input being included must be sanitized or sandboxed before being executed.

Required

 5.2.5 The application protects against template injection attacks by ensuring that any user input being
included is sanitized or sandboxed.

Required

 5.2.6 The application protects against SSRF attacks, by validating or sanitizing untrusted data or HTTP
file metadata, such as filenames and URL input fields, and uses allow lists of protocols, domains,
paths and ports.

Required

 5.2.7 The application sanitizes, disables, or sandboxes user-supplied Scalable Vector Graphics (SVG)
scriptable content, especially as they relate to XSS resulting from inline scripts, and foreignObject.

Required

 5.2.8 The application sanitizes, disables, or sandboxes user-supplied scriptable or expression template
language content, such as Markdown, CSS or XSL stylesheets, BBCode, or similar.

Required

5.3 Output Encoding
and Injection
Prevention

5.3.1 The output encoding is relevant for the interpreter and context required. For example, use encoders
specifically for HTML values, HTML attributes, JavaScript, URL parameters, HTTP headers,
SMTP, and others as the context requires, especially from untrusted inputs (e.g. names with Unicode
or apostrophes, such as ねこ or O'Hara).

Required

 5.3.10 The application protects against XPath injection or XML injection attacks. Required
 5.3.2 The output encoding preserves the user's chosen character set and locale, such that any Unicode

character point is valid and safely handled.
Required

 5.3.3 The context-aware, preferably automated - or at worst, manual - output escaping protects against
reflected, stored, and DOM based XSS.

Required

 5.3.4 The data selection or database queries (e.g. SQL, HQL, ORM, NoSQL) use parameterized queries,
ORMs, entity frameworks, or are otherwise protected from database injection attacks.

Required

SecurityONE

 Page 19

Subcategory # Requirement Assessment
 5.3.5 Where parameterized or safer mechanisms are not present, context-specific output encoding is used

to protect against injection attacks, such as the use of SQL escaping to protect against SQL injection.
Required

 5.3.6 The application protects against JSON injection attacks, JSON eval attacks, and JavaScript
expression evaluation.

Required

 5.3.7 The application protects against LDAP injection vulnerabilities, or that specific security controls to
prevent LDAP injection have been implemented.

Required

 5.3.8 The application protects against OS command injection and that operating system calls use
parameterized OS queries or use contextual command line output encoding.

Required

 5.3.9 The application protects against Local File Inclusion (LFI) or Remote File Inclusion (RFI) attacks. Required
5.4 Memory, String,
and Unmanaged Code

5.4.1 The application uses memory-safe string, safer memory copy and pointer arithmetic to detect or
prevent stack, buffer, or heap overflows.

Required

 5.4.2 The format strings do not take potentially hostile input, and are constant. Required
 5.4.3 The sign, range, and input validation techniques are used to prevent integer overflows. Required
5.5 Deserialization
Prevention

5.5.1 The serialized objects use integrity checks or are encrypted to prevent hostile object creation or data
tampering.

Required

 5.5.2 The application correctly restricts XML parsers to only use the most restrictive configuration
possible and to ensure that unsafe features such as resolving external entities are disabled to prevent
XML eXternal Entity (XXE) attacks.

Required

 5.5.3 The deserialization of untrusted data is avoided or is protected in both custom code and third-party
libraries (such as JSON, XML and YAML parsers).

Required

 5.5.4 When parsing JSON in browsers or JavaScript-based backends, JSON.parse is used to parse the
JSON document. Do not use eval() to parse JSON.

Required

SecurityONE

 Page 20

6 Stored Cryptography

Ensure that a verified application satisfies the following high level requirements:

• All cryptographic modules fail in a secure manner and that errors are handled correctly.
• A suitable random number generator is used.
• Access to keys is securely managed.

Subcategory # Requirement Assessment
6.1 Data Classification 6.1.1 The regulated private data is stored encrypted while at rest, such as Personally Identifiable

Information (PII), sensitive personal information, or data assessed likely to be subject to EU's GDPR.
Required

 6.1.2 The regulated health data is stored encrypted while at rest, such as medical records, medical device
details, or de-anonymized research records.

Required

 6.1.3 The regulated financial data is stored encrypted while at rest, such as financial accounts, defaults or
credit history, tax records, pay history, beneficiaries, or de-anonymized market or research records.

Required

6.2 Algorithms 6.2.1 All cryptographic modules fail securely, and errors are handled in a way that does not enable Padding
Oracle attacks.

Required

 6.2.2 The industry proven or government approved cryptographic algorithms, modes, and libraries are used,
instead of custom coded cryptography.

Required

 6.2.3 The encryption initialization vector, cipher configuration, and block modes are configured securely
using the latest advice.

Required

 6.2.4 The random number, encryption or hashing algorithms, key lengths, rounds, ciphers or modes, can be
reconfigured, upgraded, or swapped at any time, to protect against cryptographic breaks.

Required

 6.2.5 The known insecure block modes (i.e. ECB, etc.), padding modes (i.e. PKCS#1 v1.5, etc.), ciphers
with small block sizes (i.e. Triple-DES, Blowfish, etc.), and weak hashing algorithms (i.e. MD5,
SHA1, etc.) are not used unless required for backwards compatibility.

Required

 6.2.6 The nonces, initialization vectors, and other single use numbers must not be used more than once with
a given encryption key. The method of generation must be appropriate for the algorithm being used.

Required

SecurityONE

 Page 21

Subcategory # Requirement Assessment
 6.2.7 The encrypted data is authenticated via signatures, authenticated cipher modes, or HMAC to ensure

that ciphertext is not altered by an unauthorized party.
Recommended

 6.2.8 All cryptographic operations are constant-time, with no 'short-circuit' operations in comparisons,
calculations, or returns, to avoid leaking information.

Recommended

6.3 Random Values 6.3.1 All random numbers, random file names, random GUIDs, and random strings are generated using the
cryptographic module's approved cryptographically secure random number generator when these
random values are intended to be not guessable by an attacker.

Required

 6.3.2 The random GUIDs are created using the GUID v4 algorithm, and a Cryptographically-secure
Pseudo-random Number Generator (CSPRNG). GUIDs created using other pseudo-random number
generators may be predictable.

Required

 6.3.3 The random numbers are created with proper entropy even when the application is under heavy load,
or that the application degrades gracefully in such circumstances.

Recommended

6.4 Secret Management 6.4.1 A secrets management solution such as a key vault is used to securely create, store, control access to
and destroy secrets.

Required

 6.4.2 The key material is not exposed to the application but instead uses an isolated security module like a
vault for cryptographic operations.

Required

7 Error Handling and Logging

The primary objective of error handling and logging is to provide useful information for the user, administrators, and incident response teams. The
objective is not to create massive amounts of logs, but high quality logs, with more signal than discarded noise.
High quality logs will often contain sensitive data and must be protected as per local data privacy laws or directives. This should include:

• Not collecting or logging sensitive information unless specifically required.
• Ensuring all logged information is handled securely and protected as per its data classification.
• Ensuring that logs are not stored forever, but have an absolute lifetime that is as short as possible.

SecurityONE

 Page 22

Subcategory # Requirement Assessment
7.1 Log Content 7.1.1 The application does not log credentials or payment details. Session tokens should only be stored in

logs in an irreversible, hashed form.
Required

 7.1.2 The application does not log other sensitive data as defined under local privacy laws or relevant
security policy.

Required

 7.1.3 The application logs security relevant events including successful and failed authentication events,
access control failures, deserialization failures and input validation failures.

Required

 7.1.4 Each log event includes necessary information that would allow for a detailed investigation of the
timeline when an event happens.

Required

7.2 Log Processing 7.2.1 All authentication decisions are logged, without storing sensitive session tokens or passwords. This
should include requests with relevant metadata needed for security investigations.

Required

 7.2.2 All access control decisions can be logged and all failed decisions are logged. This should include
requests with relevant metadata needed for security investigations.

Required

7.3 Log Protection 7.3.1 All logging components appropriately encode data to prevent log injection. Required
 7.3.2 The security logs are protected from unauthorized access and modification. Required
 7.3.3 The time sources are synchronized to the correct time and time zone. Strongly consider logging only

in UTC if systems are global to assist with post-incident forensic analysis.
Required

7.4 Error Handling 7.4.1 A generic message is shown when an unexpected or security sensitive error occurs, potentially with a
unique ID which support personnel can use to investigate.

Required

 7.4.2 Exception handling (or a functional equivalent) is used across the codebase to account for expected
and unexpected error conditions.

Required

 7.4.3 A "last resort" error handler is defined which will catch all unhandled exceptions. Required

SecurityONE

 Page 23

8 Data Protection

There are three key elements to sound data protection: Confidentiality, Integrity and Availability (CIA). This standard assumes that data protection is
enforced on a trusted system, such as a server, which has been hardened and has sufficient protections.
Ensure that a verified application satisfies the following high level data protection requirements:

• Confidentiality: Data should be protected from unauthorized observation or disclosure both in transit and when stored.
• Integrity: Data should be protected from being maliciously created, altered or deleted by unauthorized attackers.
• Availability: Data should be available to authorized users as required.

Subcategory # Requirement Assessment
8.1 General Data
Protection

8.1.1 The application protects sensitive data from being cached in server components such as load balancers
and application caches.

Required

 8.1.2 All cached or temporary copies of sensitive data stored on the server are protected from unauthorized
access or purged/invalidated after the authorized user accesses the sensitive data.

Required

 8.1.3 The application minimizes the number of parameters in a request, such as hidden fields, Ajax
variables, cookies and header values.

Required

 8.1.4 The application can detect and alert on abnormal numbers of requests, such as by IP, user, total per
hour or day, or whatever makes sense for the application.

Required

 8.1.5 Regular backups of important data are performed and that test restoration of data is performed. Recommended
 8.1.6 The backups are stored securely to prevent data from being stolen or corrupted. Recommended
8.2 Client-side Data
Protection

8.2.1 The application sets sufficient anti-caching headers so that sensitive data is not cached in modern
browsers.

Required

 8.2.2 The data stored in browser storage (such as localStorage, sessionStorage, IndexedDB, or cookies)
does not contain sensitive data.

Required

 8.2.3 The authenticated data is cleared from client storage, such as the browser DOM, after the client or
session is terminated.

Required

8.3 Sensitive Private
Data

8.3.1 The sensitive data is sent to the server in the HTTP message body or headers, and that query string
parameters from any HTTP verb do not contain sensitive data.

Required

 8.3.2 The users have a method to remove or export their data on demand. Required

SecurityONE

 Page 24

Subcategory # Requirement Assessment
 8.3.3 The users are provided clear language regarding collection and use of supplied personal information

and that users have provided opt-in consent for the use of that data before it is used in any way.
Required

 8.3.4 All sensitive data created and processed by the application has been identified, and ensure that a
policy is in place on how to deal with sensitive data.

Required

 8.3.5 Accessing sensitive data is audited (without logging the sensitive data itself), if the data is collected
under relevant data protection directives or where logging of access is required.

Required

 8.3.6 The sensitive information contained in memory is overwritten as soon as it is no longer required to
mitigate memory dumping attacks, using zeroes or random data.

Required

 8.3.7 The sensitive or private information that is required to be encrypted, is encrypted using approved
algorithms that provide both confidentiality and integrity.

Required

 8.3.8 The sensitive personal information is subject to data retention classification, such that old or out of
date data is deleted automatically, on a schedule, or as the situation requires.

Required

SecurityONE

 Page 25

9 Communication

Ensure that a verified application meets the following high level requirements:

• Require TLS or strong encryption, independent of sensitivity of the content.
• Follow the latest guidance, including:

o Configuration advice
o Preferred algorithms and ciphers

• Avoid weak or soon to be deprecated algorithms and ciphers, except as a last resort
• Disable deprecated or known insecure algorithms and ciphers.

Subcategory # Requirement Assessment
9.1 Client
Communication
Security

9.1.1 The TLS is used for all client connectivity, and does not fall back to insecure or unencrypted
communications.

Required

 9.1.2 Use up to date TLS testing tools that only strong cipher suites are enabled, with the strongest cipher
suites set as preferred.

Required

 9.1.3 Only the latest recommended versions of the TLS protocol are enabled, such as TLS 1.2 and TLS 1.3.
The latest version of the TLS protocol should be the preferred option.

Required

9.2 Server
Communication
Security

9.2.1 The connections to and from the server use trusted TLS certificates. Where internally generated or
self-signed certificates are used, the server must be configured to only trust specific internal CAs and
specific self-signed certificates. All others should be rejected.

Required

 9.2.2 Encrypted communications such as TLS is used for all inbound and outbound connections, including
for management ports, monitoring, authentication, API, or web service calls, database, cloud,
serverless, mainframe, external, and partner connections. The server must not fall back to insecure or
unencrypted protocols.

Required

 9.2.3 All encrypted connections to external systems that involve sensitive information or functions are
authenticated.

Required

 9.2.4 Proper certification revocation, such as Online Certificate Status Protocol (OCSP) Stapling, is enabled
and configured.

Required

 9.2.5 The backend TLS connection failures are logged. Recommended

SecurityONE

 Page 26

10 Malicious Code

Ensure that code satisfies the following high level requirements:

• Malicious activity is handled securely and properly to not affect the rest of the application.
• Does not have time bombs or other time-based attacks.
• Does not "phone home" to malicious or unauthorized destinations.
• Does not have back doors, Easter eggs, salami attacks, rootkits, or unauthorized code that can be controlled by an attacker.

Subcategory # Requirement Assessment
10.1 Code Integrity 10.1.1 A code analysis tool is in use that can detect potentially malicious code, such as time functions,

unsafe file operations and network connections.
Recommended

10.2 Malicious Code
Search

10.2.1 The application source code and third party libraries do not contain unauthorized phone home or data
collection capabilities. Where such functionality exists, obtain the user's permission for it to operate
before collecting any data.

Required

 10.2.2 The application does not ask for unnecessary or excessive permissions to privacy related features or
sensors, such as contacts, cameras, microphones, or location.

Required

 10.2.3 The application source code and third party libraries do not contain back doors, such as hard-coded
or additional undocumented accounts or keys, code obfuscation, undocumented binary blobs,
rootkits, or anti-debugging, insecure debugging features, or otherwise out of date, insecure, or
hidden functionality that could be used maliciously if discovered.

Recommended

 10.2.4 The application source code and third party libraries do not contain time bombs by searching for date
and time related functions.

Recommended

 10.2.5 The application source code and third party libraries do not contain malicious code, such as salami
attacks, logic bypasses, or logic bombs.

Recommended

 10.2.6 The application source code and third party libraries do not contain Easter eggs or any other
potentially unwanted functionality.

Recommended

10.3 Application
Integrity

10.3.1 If the application has a client or server auto-update feature, updates should be obtained over secure
channels and digitally signed. The update code must validate the digital signature of the update
before installing or executing the update.

Required

 10.3.2 The application employs integrity protections, such as code signing or subresource integrity. The
application must not load or execute code from untrusted sources, such as loading includes, modules,
plugins, code, or libraries from untrusted sources or the Internet.

Required

SecurityONE

 Page 27

Subcategory # Requirement Assessment
 10.3.3 The application has protection from subdomain takeovers if the application relies upon DNS entries

or DNS subdomains, such as expired domain names, out of date DNS pointers or CNAMEs, expired
projects at public source code repos, or transient cloud APIs, serverless functions, or storage buckets
(autogen-bucket-id.cloud.example.com) or similar. Protections can include ensuring that DNS names
used by applications are regularly checked for expiry or change.

Required

11 Business Logic

Ensure that a verified application satisfies the following high level requirements:

• The business logic flow is sequential, processed in order, and cannot be bypassed.
• Business logic includes limits to detect and prevent automated attacks, such as continuous small funds transfers, or adding a million friends one

at a time, and so on.
• High value business logic flows have considered abuse cases and malicious actors, and have protections against spoofing, tampering,

information disclosure, and elevation of privilege attacks.

Subcategory # Requirement Assessment
11.1 Business Logic
Security

11.1.1 The application will only process business logic flows for the same user in sequential step order and
without skipping steps.

Required

 11.1.2 The application will only process business logic flows with all steps being processed in realistic
human time, i.e. transactions are not submitted too quickly.

Required

 11.1.3 The application has appropriate limits for specific business actions or transactions which are
correctly enforced on a per user basis.

Required

 11.1.4 The application has anti-automation controls to protect against excessive calls such as mass data
exfiltration, business logic requests, file uploads or denial of service attacks.

Required

 11.1.5 The application has business logic limits or validation to protect against likely business risks or
threats, identified using threat modeling or similar methodologies.

Required

 11.1.6 The application does not suffer from "Time Of Check to Time Of Use" (TOCTOU) issues or other
race conditions for sensitive operations.

Required

SecurityONE

 Page 28

Subcategory # Requirement Assessment
 11.1.7 The application monitors for unusual events or activity from a business logic perspective. For

example, attempts to perform actions out of order or actions which a normal user would never
attempt.

Required

 11.1.8 The application has configurable alerting when automated attacks or unusual activity is detected. Required

12 Files and Resources

Ensure that a verified application satisfies the following high level requirements:

• Untrusted file data should be handled accordingly and in a secure manner.
• Untrusted file data obtained from untrusted sources are stored outside the web root and with limited permissions.

Subcategory # Requirement Assessment
12.1 File Upload 12.1.1 The application will not accept large files that could fill up storage or cause a denial of service. Required
 12.1.2 The application checks compressed files (e.g. zip, gz, docx, odt) against maximum allowed

uncompressed size and against maximum number of files before uncompressing the file.
Required

 12.1.3 A file size quota and maximum number of files per user is enforced to ensure that a single user
cannot fill up the storage with too many files, or excessively large files.

Required

12.2 File Integrity 12.2.1 Files obtained from untrusted sources are validated to be of expected type based on the file's content. Required
12.3 File Execution 12.3.1 The user-submitted filename metadata is not used directly by system or framework filesystems and

that a URL API is used to protect against path traversal.
Required

 12.3.2 The user-submitted filename metadata is validated or ignored to prevent the disclosure, creation,
updating or removal of local files (LFI).

Required

 12.3.3 The user-submitted filename metadata is validated or ignored to prevent the disclosure or execution
of remote files via Remote File Inclusion (RFI) or Server-side Request Forgery (SSRF) attacks.

Required

 12.3.4 The application protects against Reflective File Download (RFD) by validating or ignoring user-
submitted filenames in a JSON, JSONP, or URL parameter, the response Content-Type header
should be set to text/plain, and the Content-Disposition header should have a fixed filename.

Required

SecurityONE

 Page 29

Subcategory # Requirement Assessment
 12.3.5 The untrusted file metadata is not used directly with system API or libraries, to protect against OS

command injection.
Required

 12.3.6 The application does not include and execute functionality from untrusted sources, such as
unverified content distribution networks, JavaScript libraries, node npm libraries, or server-side
DLLs.

Required

12.4 File Storage 12.4.1 The files obtained from untrusted sources are stored outside the web root, with limited permissions. Required
 12.4.2 The files obtained from untrusted sources are scanned by antivirus scanners to prevent upload and

serving of known malicious content.
Required

12.5 File Download 12.5.1 The web tier is configured to serve only files with specific file extensions to prevent unintentional
information and source code leakage. For example, backup files (e.g. .bak), temporary working files
(e.g. .swp), compressed files (.zip, .tar.gz, etc) and other extensions commonly used by editors
should be blocked unless required.

Required

 12.5.2 The direct requests to uploaded files will never be executed as HTML/JavaScript content. Required
12.6 SSRF Protection 12.6.1 The web or application server is configured with an allow list of resources or systems to which the

server can send requests or load data/files from.
Required

13 API and Web Service

Ensure that a verified application that uses trusted service layer APIs (commonly using JSON or XML or GraphQL) has:

• Adequate authentication, session management and authorization of all web services.
• Input validation of all parameters that transit from a lower to higher trust level.
• Effective security controls for all API types, including cloud and Serverless API

Subcategory # Requirement Assessment
13.1 Generic Web
Service Security

13.1.1 All application components use the same encodings and parsers to avoid parsing attacks that exploit
different URI or file parsing behavior that could be used in SSRF and RFI attacks.

Required

 13.1.2 The API URLs do not expose sensitive information, such as the API key, session tokens etc. Required

SecurityONE

 Page 30

Subcategory # Requirement Assessment
 13.1.3 The authorization decisions are made at both the URI, enforced by programmatic or declarative

security at the controller or router, and at the resource level, enforced by model-based permissions.
Required

 13.1.4 The requests containing unexpected or missing content types are rejected with appropriate headers
(HTTP response status 406 Unacceptable or 415 Unsupported Media Type).

Required

13.2 RESTful Web
Service

13.2.1 The enabled RESTful HTTP methods are a valid choice for the user or action, such as preventing
normal users using DELETE or PUT on protected API or resources.

Required

 13.2.2 The JSON schema validation is in place and verified before accepting input. Required
 13.2.3 The RESTful web services that utilize cookies are protected from Cross-Site Request Forgery via the

use of at least one or more of the following: double submit cookie pattern, CSRF nonces, or Origin
request header checks.

Required

 13.2.4 The REST services explicitly check the incoming Content-Type to be the expected one, such as
application/xml or application/json.

Required

 13.2.5 The message headers and payload are trustworthy and not modified in transit. Requiring strong
encryption for transport (TLS only) may be sufficient in many cases as it provides both
confidentiality and integrity protection. Per-message digital signatures can provide additional
assurance on top of the transport protections for high-security applications but bring with them
additional complexity and risks to weigh against the benefits.

Required

13.3 SOAP Web
Service

13.3.1 The XSD schema validation takes place to ensure a properly formed XML document, followed by
validation of each input field before any processing of that data takes place.

Required

 13.3.2 The message payload is signed using WS-Security to ensure reliable transport between client and
service.

Required

13.4 GraphQL 13.4.1 A query allow list or a combination of depth limiting and amount limiting is used to prevent
GraphQL or data layer expression Denial of Service (DoS) as a result of expensive, nested queries.
For more advanced scenarios, query cost analysis should be used.

Required

 13.4.2 The GraphQL or other data layer authorization logic should be implemented at the business logic
layer instead of the GraphQL layer.

Required

SecurityONE

 Page 31

14 Configuration

Ensure that a verified application has:

• A secure, repeatable, automatable build environment.
• Hardened third party library, dependency and configuration management such that out of date or insecure components are not included by the

application.

Subcategory # Requirement Assessment
14.1 Build and Deploy 14.1.1 The application build and deployment processes are performed in a secure and repeatable way, such

as CI / CD automation, automated configuration management, and automated deployment scripts.
Required

 14.1.2 The compiler flags are configured to enable all available buffer overflow protections and warnings,
including stack randomization, data execution prevention, and to break the build if an unsafe pointer,
memory, format string, integer, or string operations are found.

Required

 14.1.3 The server configuration is hardened as per the recommendations of the application server and
frameworks in use.

Required

 14.1.4 The application, configuration, and all dependencies can be re-deployed using automated deployment
scripts, built from a documented and tested runbook in a reasonable time, or restored from backups in
a timely fashion.

Required

 14.1.5 The authorized administrators can verify the integrity of all security-relevant configurations to detect
tampering.

Required

14.2 Dependency 14.2.1 All components are up to date, preferably using a dependency checker during build or compile time. Required
 14.2.2 All unneeded features, documentation, sample applications and configurations are removed. Required
 14.2.3 If application assets, such as JavaScript libraries, CSS or web fonts, are hosted externally on a

Content Delivery Network (CDN) or external provider, Subresource Integrity (SRI) is used to
validate the integrity of the asset.

Required

 14.2.4 The third party components come from pre-defined, trusted and continually maintained repositories. Required
 14.2.5 A Software Bill of Materials (SBOM) is maintained of all third party libraries in use. Required
 14.2.6 The attack surface is reduced by sandboxing or encapsulating third party libraries to expose only the

required behaviour into the application.
Required

14.3 Unintended
Security Disclosure

14.3.1 The web or application server and application framework debug modes are disabled in production to
eliminate debug features, developer consoles, and unintended security disclosures.

Required

SecurityONE

 Page 32

Subcategory # Requirement Assessment
 14.3.2 The HTTP headers or any part of the HTTP response do not expose detailed version information of

system components.
Required

14.4 HTTP Security
Headers

14.4.1 Every HTTP response contains a Content-Type header. Also specify a safe character set (e.g., UTF-
8, ISO-8859-1) if the content types are text/*, /+xml and application/xml. Content must match with
the provided Content-Type header.

Required

 14.4.2 All API responses contain a Content-Disposition: attachment; filename="api.json" header (or other
appropriate filename for the content type).

Required

 14.4.3 A Content Security Policy (CSP) response header is in place that helps mitigate impact for XSS
attacks like HTML, DOM, JSON, and JavaScript injection vulnerabilities.

Required

 14.4.4 All responses contain a X-Content-Type-Options: nosniff header. Required
 14.4.5 A Strict-Transport-Security header is included on all responses and for all subdomains, such as

Strict-Transport-Security: max-age=15724800; includeSubdomains.
Required

 14.4.6 A suitable Referrer-Policy header is included to avoid exposing sensitive information in the URL
through the Referer header to untrusted parties.

Required

 14.4.7 The content of a web application cannot be embedded in a third-party site by default and that
embedding of the exact resources is only allowed where necessary by using suitable Content-
Security-Policy: frame-ancestors and X-Frame-Options response headers.

Required

14.5 HTTP Request
Header Validation

14.5.1 The application server only accepts the HTTP methods in use by the application/API, including pre-
flight OPTIONS, and logs/alerts on any requests that are not valid for the application context.

Required

 14.5.2 The supplied Origin header is not used for authentication or access control decisions, as the Origin
header can easily be changed by an attacker.

Required

 14.5.3 The Cross-Origin Resource Sharing (CORS) Access-Control-Allow-Origin header uses a strict allow
list of trusted domains and subdomains to match against and does not support the "null" origin.

Required

 14.5.4 The HTTP headers added by a trusted proxy or SSO devices, such as a bearer token, are
authenticated by the application.

Required

SecurityONE

 Page 33

15 Other requirements

Subcategory # Requirement Assessment
15.1 Testing 15.1.1 Test plans should be developed and documented. Test cases should consider attack and abuse use

cases, with a specific focus on misuse of inputs and outputs to compromise the security of the
application. Testing of complex applications with numerous inputs may be conducted on sample
basis.

Required

 15.1.2 Security testing (e.g. code reviews and penetration testing) should be performed regularly. Testing
should be performed at critical milestones to validate that controls operate as designed.

Required

 15.1.3 Security testing must be performed by individuals other than the originating code author. Testing
must be performed by individuals with qualifications that are deemed appropriate by the Business
Owner

Required

 15.1.4 Security vulnerabilities identified during testing should be addressed prior to production
implementation. Any untreated security vulnerabilities must be documented, and the documentation
reviewed and approved by the Business Owner.

Required

 15.1.5 Development and test environments must be kept separate from production environments. Required
 15.1.6 Personnel assigned to the development or test environments must not have access to the production

environment or data unless authorised by the Business Owner.
Required

 15.1.7 Production data should not be used for testing or development unless authorised by the Business
Owner.

Required

 15.1.8 Data supplied for development must not reveal or allow the recreation of sensitive information
including personal information. If production data is to be used for testing, security controls must be
implemented to adequately safeguard agency data.

Required

15.2 Implementation 15.2.1 All documentation must be adequately protected from unauthorised access. Required
 15.2.2 Web application components and supporting services with known or published high risk or critical

vulnerabilities must not be used, or must be patched within an acceptable timeframe of the
vulnerability becoming known.

Required

 15.2.3 All unnecessary application content should be removed prior to application acceptance into
production. This includes removing all test and default files, test user accounts and other
unnecessary content.

Required

 15.2.4 Application administration access interfaces (e.g. admin login pages) should be disabled or be
restricted.

Required

SecurityONE

 Page 34

Subcategory # Requirement Assessment
 15.2.5 Web applications must be configured to use a service account assigned the least privileges necessary

to run the applications
Required

15.3 Operations and
Maintenance

15.3.1 Version control must be maintained for all application updates and changes. Required

 15.3.2 All changes to applications, including updates and patches, must be reviewed and tested to ensure
that there is no adverse impact on operation or security. This includes:
1 formal change control procedures must be established and documented, and evidence retained that
the procedure is implemented and complied with
2 changes must be approved by the Business Owner
3 systems must only be deployed on production and public facing networks after assessment and
final approval by authorised parties
4 adequate testing must take place prior to changes being applied to production systems.

Required

 15.3.3 Business continuity and recovery plans should be updated to reflect changes to production systems. Required
 15.3.4 When significant changes or enhancements are made, a risk assessment must be performed to

consider the security implications of such changes. Additional security testing should be undertaken
as deemed necessary by risk assessment.

Required

 15.3.5 Vulnerability identification and patch management procedures, roles and responsibilities must be
defined and followed to ensure security vulnerabilities in web applications are identified and
patched.

Required

 15.3.6 Web application monitoring tools should be implemented to detect breaches or misuse of web
applications.

Required

15.4 Protection of
source code

15.4.1 The reference copy of source code must be stored in a source code library approved by the Business
Owner.

Required

 15.4.2 Source code libraries must be adequately secured to protect against unauthorised or inappropriate
access or changes.

Required

 15.4.3 An audit log must be maintained of all access to program source libraries. Required
 15.4.4 The reference copy of source code must not exist on production web servers. Required
 15.4.5 Old versions of source programs should be archived, with a clear indication of the precise dates and

times when they were operational.
Required

