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Claims Adjudication
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Problem: Number of Claims 

• 5 953 640 Claims:

• 12 371 992 Medical Items
• 16 655 364 Medical Services

• 3 790 789 Insurees

• 780 Health Facilities
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Bottelneck: Human Adjudicators
• Estimation (openIMIS Nepal): 

• 1 officer = 100 claims per day max
• Currently employed: 

• 16 officers = 1,600 claims per day
• Needed: 

• 300 officer = 30,000 claims per day
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Adding AI



Rule Based Automation

Submission
Manual 

Evaluation
Payment

Response

Rules Engine

Aim: 
• Reduce workload

Method:
• Automatically reject formally 

incorrect claims
• No manual verification of 

rejected claims

Formally this is already Artificial 
Intelligence (but not Machine 
Learning and not the hype thing)
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AI Supported Automation
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Challenges on data analysis 
• Only 3.78% of labeled data is rejected, while only 

2.29% has an associated rejection reason

• Rejection justifications are free non standardized text 
fields ➩ need to process this information in order to 
extract rejection reasons and standardize the 
Justification/Adjustment field

• ➩ dealing with highly imbalanced dataset

• Most of the features are categorical

➩ only specific AI models are capable to consider this
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Challenges on data analysis 
• Most of the features are categorical

• Numerical: QuantityProvided, PriceAsked, ItemPrice

• Categorical:

• Date: DateFrom, DateTo, DateClaimed, DOB

• Related to categories: ItemFrequency, ItemPatCat, ItemLevel, 
VisitType,  HFLevel, HFCareType, Gender, ItemServiceType, 
PovertyStatus

• ID related: ItemID, ClaimID, ClaimAdminID, HFID, LocationID, 
HFLocationID, InsureeID, FamilyID, ICDID, ICDID1
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Only 3.78% of labeled data is rejected, 
while only 2.29% has an associated 
rejection reason



Challenges on data analysis 
• Most of the features are categorical

• Numerical: QuantityProvided, PriceAsked, ItemPrice
Duration, DurationClaimed, Age

• Categorical:

• Date: DateFrom, DateTo, DateClaimed, DOB

• Related to categories: ItemFrequency, ItemPatCat, ItemLevel, 
VisitType,  HFLevel, HFCareType, Gender, ItemServiceType, 
Poverty

• ID related: ItemID, ClaimID, ClaimAdminID, HFID, LocationID, 
HFLocationID, InsureeID, FamilyID, ICDID, ICDID1

➩ replace ID related fields with aggregated fields
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Only 3.78% of labeled data is rejected, 
while only 2.29% has an associated 
rejection reason
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Excluding conditions
Condition Description

1. df[‘ClaimStatus’] == CS_Entered
The items that are submitted, but not yet in 
checked by the Rule Engile are excluded

2. df['RejectionReason']>RR_Accepted Items rejected by the Rule Engine are excluded

3.(df['RejectionReason']==RR_RbyMO)&(df['PriceValuate
d']>0)

Incoherence between status and valuated price

4. ((df['ClaimItemStatus']==CIS_Rejected)&\
(df['RejectionReason']==RR_Accepted))|\

((df['ClaimStatus']==CS_Rejected)&(df['RejectionReason'
]==RR_Accepted))|((df['ClaimItemStatus']==CIS_Accepte
d)&(df['RejectionReason']==RR_RbyMO))

Incoherence in the status fields are excluded

5. df['ClaimAdminId'].isnull())|(df['VisitType'].isnull()) Missing values in the ClaimAdminId, VisiType fields

6. (df ['DateFrom']<datetime.datetime(2016, 5, 15))|\
(df ['DOB']>df_items['DateFrom'])|\
(df ['DateClaimed']<datetime.datetime(2016, 5, 15))|\
(df ['DateClaimed']<df['DateFrom'])

Incoherence in the date related fields

7. df['HFID']!=df['HFId'] Check if ClaimAdminID has the same HFID as the 
ClaimHFID
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Aggregation
Field name Description

LastSameItem Number of days since last submitted (and accepted) item (same ItemID)

SameItemPerDay/Claim Count of items having the same ItemID, submitted same day/claim

ItemPerClaim
AmountPerClaim/Day

Count of items having the same ItemID, submitted within the claim
Amount related to the claim/day (ItemPrice or PriceAsked?)

ItemsPerWeek/Month/ 
Quarter/Year

Count of items for same Insuree over a period of 7 days (1 week), 30 days (1 month) or 90 
days prior to the current submission

AmountPerWeek/Month/
Quarter/Year

Total ItemPrice/PriceAsked for the items submitted over a period of 7, 30 or 90 days prior to 
the current submission

AverageClaimOverMonth Average amount of a claim over a 30 days period until the current submission
AmountPerMonth/ClaimsPerMonth

AverageOverQuarter Average amount / week related to claims submitted over past 90 days
AmountPerQuarter/12

AverageDailyOverMonth Average amount/day related to claims submitted over past 30 days
AmountPerMonth/30

IsPackage Check is a package was submitted within the associated claim

!Infinite possibilities of aggregation with respect to other Features and Time periods.
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Challenges on data analysis 
• Most of the features are categorical

• Numerical: QuantityProvided, PriceAsked, ItemPrice
Duration, DurationClaimed, Age, LastSameItem, SameItemPerClaim, 
SameItemPerDay, ItemsPerDay/Week/Month/Quarter/Year, 
AmountPerDay/Week/Month/Quarter/Year

• Categorical:

• Date: DateFrom, DateTo, DateClaimed, DOB

• Related to categories: ItemFrequency, ItemPatCat, ItemLevel, 
VisitType,  HFLevel, HFCareType, Gender, ItemServiceType, 
Poverty

• ID related: ItemID, ClaimID, ClaimAdminID, HFID, LocationID, 
HFLocationID, InsureeID, FamilyID, ICDID, ICDID1

or UUID/Code related: ItemUUID, ClaimUUID, 
ClaimAdminUUID, HFUUID, LocationID, HFLocationID, 
InsureeUUID, FamilyUUID, ICDCode, ICD1Code
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Only 3.78% of labeled data is rejected, 
while only 2.29% has an associated 
rejection reason



Aggregation – in practice 18

• In order to create the aggregated features, access to historical
dataset is necessary

• For new submitted claims, in order to create the aggregated
features for these claims, we need to retrieve the historical claims 
related to the InsureeIDs



AI model performances 19

Accuracy=
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
=

501747+8241

501747+2025+4936+8241
=

509988

516949
= 0.9865

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

8241

2025+8241
=

8241

10266
= 0.8027

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

8241

8241+4936
=

8241

13177
= 0.6254

F1 − score = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
= 2

0.8027∗0.6254

0.8027+0.6254
= 0.7031



AI model performances 20

Dataset Accuracy Precision Recall F1-Score

Training set 0.9955 0.9600 0.8612 0.9079 

Test set 0.9865 0.8027 0.6254 0.7031 

Production: 1 weeks 0.9854 0.6424 0.4763 0.5471 

Production: 1 month 0.9839 0.6340 0.4358 0.5166 

Production: 2 months 0.9832 0.6156 0.4143 0.4953 

Production: 3 months 0.9831 0.6028 0.4027 0.4828 

Production: >1year 0.9853 0.3876 0.3167 0.3486 



Fairness indices 21

• We can check the fairness of the AI model with respect to several 
feature values: 
Gender, Poverty, Age, Location, Race, Education, Religion, …



Top view of developments/tests 22



Top view of developments/tests 23

ML algorithm dependencies and variations:

• Dataset variations: 

• Binary class

• Multiclass

• Imbalanced case

• Balanced case: Undersampling/Oversampling 

techniques (only on the training set)

• Feature aggregation

• Splitting of the dataset in several sets: train/dev/test 

set, train/test set, ... (depending on the ML algorithm, 

validation method)

• Hyperparameters of the ML algorithm to be tuned

• Evaluation metrics: precision, recall, f1 score, 

accuracy, ...

• Validation step: holdout method, cross-validation, ...



Now what? 24

• Creation of a synthetic dataset that can be used for a 
DemoServer

• Create a video presenting the model?

• How to increase acceptance of the openIMIS AI module?

• How to improve the AI model?



Now what? 25

• Creation of a synthetic dataset that can be used for a 
DemoServer

• Create a video presenting the model?

• How to improve acceptance of the openIMIS AI module?

• How to improve the AI model?
• Still needs to be improved?



Contacts SwissTPH:

• Dragos Dobre (dragos.dobre@swisstph.ch)

• Simona Dobre (simona@dobre.fr)

• Siddharth Srivastava (siddharth.srivastava@swisstph.ch) 

More information on openIMIS
Website: www.openIMIS.org

Wiki: wiki.openIMIS.org

Source code: github.com/openimis

Documentation: docs.openIMIS.org

Demo: demo.openIMIS.org

Thank you
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https://demo.openimis.org/

