
openIMIS
Scheduled Processing

openIMIS - current scheduling

openIMIS - scheduled processing
● Scheduled (or ‘batch’) processing in IT systems

You always want to keep most of your resources for your “interactive users”
… and thus keeping background stuff in the background (constraining resource consumption)
Example:
DON’T import 5M claims via the current openIMIS FHIR API (we should be looking at http://bit.ly/fhir-bulk-api ;-))

● In the initial roadmap, we proposed to use Apache AirFlow
○ Open Source, very complete, ‘python friendly’,...
○ BUT:

■ it requires a separate docker - that should be also the case for any solution in any prod env. (batch on their own resources)

■ it is ‘yet another technology’ (with dedicated vocabulary, ‘UI style’,...)

● In line with to our (togaf-based) methodology, we re-assess the use of AirFlow
○ because it was not used (and thus setup) yet
○ … and there will (should be) other opportunities to change/improve/...

http://bit.ly/fhir-bulk-api
https://openimis.atlassian.net/wiki/spaces/OP/pages/609779734/Batch+Backend+Technology+Stack
https://airflow.apache.org/

openIMIS - scheduled processing - OMT-215
Assessed solutions:

● OpenHIM (and OpenHIE ecosystem at large)

● OpenMRS (what did they do?)

● django existing modules for “scheduling/background tasks/…”

https://openimis.atlassian.net/browse/OMT-215

OpenHIM (thanks Daniel)

● Has some features ‘in scope’
○ Bulk data (‘large payload’ messages) processing
○ Polling channel
○ Orchestration capabilities
○ Monitoring (error replay,...)

○ … could be customized via Mediator to encompass our needs

● BUT
○ OpenHIM as a rather distinct ‘angle’ (usage of these features): it is focus on “data exchange”
○ Is better positioned ‘down’ or ‘up’ stream of our scheduled processes

(example: sending SMS based on our prepared communication in our policy renewal scheduled process)
○ … but not so well for openIMIS ‘internal’ processing

(trigger and follow-up of our policy renewal batch)

● THUS
Although integration with OpenHIM is relevant in our scheduled processes scope (as it is in all our
data exchanges with other systems), OpenHIM is not well suited to be our “foundation” for
scheduled processing in openIMIS

OpenHIE

Question to OpenHIE community:
Would an ‘central scheduler’ fit in the Interoperability Services Layer?

OpenMRS
OpenMRS has integrated scheduled task management

… developed ‘custom’ inside OpenMRS code

… we are not going to deploy OpenMRS along openIMIS (at least not ‘just’ for scheduling)

https://wiki.openmrs.org/display/docs/Administering+Scheduled+Tasks

https://github.com/openmrs/openmrs-core/tree/master/api/src/main/java/org/openmrs/scheduler
https://wiki.openmrs.org/display/docs/Administering+Scheduled+Tasks

Django existing modules: Celery
☑ Already part of the platform
☑ Easy to setup and configure
 CELERYBEAT_SCHEDULE = {

'policy_renewals_mon': {
 'task': 'policy_renewals',
 'schedule': crontab(hour=6, minute=0, day_of_week='monday'),

❌ No concurrency management
❌ No pause/resume, check of completion
❌ No administration interface

Django existing modules: django-cron
● Only handles the concurrency of jobs and similar issues
● Relies on a Django command started from crontab
● Designed as stand-alone

Django existing modules: django-background-tasks
❌ More of a “delayed task” than a real batch platform
❌ No update in over 6 months, compatible with Django 2.2. => 3?
❌ Execution of the tasks relies on running a manage.py command

Django existing modules: django-scheduler
✅ Great calendar UI

❌ Tricky integration into current UI build
❌ Calendar UI is cool not so useful
❌ No concurrency management

Django existing modules: APScheduler
Advanced Python Scheduler

✅ Can run with its own process or be bundled into the Django instance (easy)
✅ Manages scheduling and concurrency
✅ Integrated into the Django Admin console
✅ Jobs can be started/paused/cancelled from the console
✅ Job completion or failure is recorded
✅ Uses the database rather than RabbitMQ or Redis

⚠ Works with Django (module available) but with some caveats

Django existing modules: APScheduler

Conclusion and proposal
● For our current scope (Policy & insuree pictures renewal), AirFlow is by far overkill

(and would add a complexity to deployment stack at the wrong moment: legacy/new stack
cohabitation makes it already very complex)

● OpenHIM (which could ‘justify’ additional complexity) is not well suited on
several scheduled processes aspects

● … best option is to use APScheduler (based on our needs for policy
renewals)

○ trying to ‘remain open’ (encapsulate in REST API,...) to external scheduling, or bulk data
exchanges

○ … and re-assess the day we would need more

