
lntegration of Fast Healthcare

lnteroperability Resources (HL7 FHIR)

into the openlMlS open source Health

Insurance Management System

Bachelor thesis

Natural Science Faculty of the University of Basel

Department of Mathematics and Computer Science

Databases and Information Systems Group

https://dbis.dmi.unibas.ch/

Examiner: Prof. Dr. Heiko Schuldt

Supervisor: MSc ETH Claudia Saupper (Swiss TPH)

Faris Ahmetasevic

faris.ahmetasevic@stud.unibas.ch

2015-059-538

20.07.2020

Acknowledgments

I would like to thank Prof. Dr Schuldt for giving me the opportunity to write my Bachelor

thesis on the openIMIS Initiative with the team of the Swiss TPH.

Further thanks are due to the entire sta↵ of Swiss TPH, who welcomed me warmly and gave

me the feeling to be a full member of the team. Especially my supervisor Claudia Saupper

and Dragos Dobre, who were available at any time to support me, give feedback and answer

any questions without hesitation. Also, I want to thank Michel Borer, who as well wrote his

Bachelor thesis with the Swiss TPH, for his support and for being a good team member, as

well as Patrick Delcroix, who sacrificed two days to set up the modular version of openIMIS

together with us. The possibility to hold weekly meetings was very helpful and I appreciate

that Claudia and Dragos took the time to do so.

To close, I would like to thank my family and friends who supported me during the whole

four months and relieved me in other areas, so that I have the time to work on my Bachelor

thesis.

Abstract

The Swiss Tropical and Public Health Institute (Swiss TPH) is part of the openIMIS Ini-

tiative, which consists of organizations from all over the world that have joined forces to set

up a health insurance system. The goal of the open source Insurance Management Informa-

tion System (openIMIS) is to provide insurers with a low cost solution for managing health

insurance schemes and to give policyholders a way to administer their schemes with their

mobile phones.

However, the di�culty is that healthcare data must be accessible anytime and anywhere to

interact with other hospital management systems. Health Level 7 Fast Healthcare Interop-

erability Resources (HL7 FHIR) is used to ensure this exchange of data.

Since openIMIS uses FHIR version 3 interface and therefore many relevant attributes for

the administration of insurance are missing, the objective of this bachelor thesis is to extend

these attributes to FHIR version 4.

Table of Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Swiss TPH . 1

1.2 openIMIS . 1

1.2.1 Objective . 2

1.2.2 How to achieve that? . 2

1.2.3 History . 2

1.2.4 System Description . 4

1.3 HL7 FHIR . 5

1.3.1 Resources . 5

1.3.1.1 Structure . 5

1.3.1.2 JSON Representation . 6

1.3.2 Codes . 8

1.3.3 Extensions . 8

1.4 Process of the project . 8

2 Preparation 10

2.1 Requirements . 10

2.1.1 Operating System . 10

2.1.2 Microsoft SQL Server 2017 . 10

2.2 Setting up openIMIS . 10

3 Development 13

3.1 Architecture of the FHIR version 3 module 13

3.1.1 Configurations . 14

3.1.2 paginations.py . 14

3.1.3 Models . 14

3.1.4 Converters . 15

3.1.5 Serializer . 16

3.1.6 permissions.py . 16

3.1.7 views.py . 16

Table of Contents v

3.1.8 urls.py . 16

3.2 Access to the FHIR API . 17

3.3 Integration of FHIR R4 into openIMIS . 17

3.4 Mapping . 17

3.4.1 Mapping process . 21

3.5 Data Migration Tool . 22

3.5.1 Database Management System . 22

3.5.2 JSON File Creator . 23

3.5.3 Creating Database Tables . 25

3.5.4 Merging Both Tools . 27

3.5.5 How to use it? . 27

3.6 Publishing the openIMIS FHIR R4 Module 28

4 Conclusion 30

4.1 Conclusion . 30

4.2 Future Work . 30

Bibliography 32

Appendix A Appendix 35

A.1 List of Abbreviations . 35

A.2 List of used Modules . 36

A.3 List of Mapped Resources . 36

A.4 End Product . 36

A.5 Mapping Tables . 37

A.5.1 Overview Table . 37

A.5.2 Claim Table . 38

A.5.3 ClaimResponse Table . 39

A.5.4 Coverage Table . 40

A.5.5 Patient Table . 41

A.5.6 Practitioner Table . 42

A.5.7 PractitionerRole Table . 42

A.5.8 Location Table . 43

A.5.9 CoverageEligibilityRequest Table . 43

A.5.10 CoverageEligibilityResponse Table . 44

A.5.11 Communicationrequest Table . 44

A.5.12 Condition Table . 45

A.5.13 Medication Table . 45

A.5.14 ActivityDefinition Table . 46

A.5.15 HealthcareService Table . 46

Declaration on Scientific Integrity 47

1
Introduction

Like almost everything else in the world, healthcare financial systems are being digitised.

We, who live in digitally advanced countries, are not aware of the problems that a task

cannot be completed e�ciently and reliable at the touch of a button. The openIMIS Initia-

tive has therefore set itself the task of developing a free alternative that allows low-income

countries to manage their health care finances quickly and e�ciently.

1.1 Swiss TPH
Prior to discussing openIMIS, I would like to explain briefly what the Swiss TPH is.

The Swiss Tropical and Public Health Institute1 (Swiss TPH) is one of the world’s most

recognized research institutes associated with the University of Basel and is active in the

field of global health.

From the identification of medical problems, to the development of the necessary measures,

the development of remedies as well as the monitoring and evaluation of treatment cam-

paigns, all activities are carried out by the more than 850 employees2.

1.2 openIMIS
openIMIS3 is an open source system for managing health insurance schemes by o↵ering an

easily understandable and user-friendly interface.

1 O�cal website of the Swiss TPH [10]
2 German Wikipedia page of the Swiss TPH [11]
3 O�cial openIMIS website [6]

Introduction 2

1.2.1 Objective
”We have around 400 million people without access to a complete set of essential health

services.” [47]

With this described problem the openIMIS Initiative has set itself the goal to achieve an

universal health coverage and an universal social protection by fulfilling the Sustainable De-

velopment Goals45 (SDGs). These are 17 global goals described by the General Assembly

of the United Nations, which are to be achieved by the year 2030. The openIMIS Initiative

focuses especially on SDG 1, which aims to end poverty in all its forms worldwide, and SDG

3, which is intended to ensure a healthy life for all people of all ages. The subcategories

SDG 1.3 and SDG 3.8 are thereby mainly addressed.

SDG 1.3 tackles to implement nationally appropriate social protection systems and measures

for all, including floors, and by 2030 achieve substantial coverage of the poor and the vul-

nerable. On the other hand, SDG 3.8 wants to achieve universal health coverage, including

financial risk protection, access to quality essential health-care services and access to safe,

e↵ective, quality and a↵ordable essential medicines and vaccines for all.

1.2.2 How to achieve that?
The openIMIS Initiative is a rapidly growing developer community, which ensures a contin-

uous improvement of the system as well as a possibility to adapt to the needs of di↵erent

countries by customizing specific scheme types. Because of that, openIMIS is designed to

be compatible with other IT-services to have a better data exchange. The last and most

important part is, that it is an open source system, so anyone can download it for free and

modify the code according to their preferences, which will directly lead to a feedback for the

community and again to the continuous improvement.

1.2.3 History
At the beginning, in 2012, the Insurance Management Information System (IMIS) was

launched with the help of the Swiss Development Cooperation6 (SDC) and developed among

others by SwissTPH to be used in Tanzania. Due to the success of the openIMIS predeces-

sor, which was not an open source system at that time, other countries such as Cameroon

and Nepal were willing to use this system.

4 Wikipedia page of SDG [9]
5 O�cial list of SDG indicators [8]
6 O�cial website of the SDC [7]

Introduction 3

Figure 1.1: From IMIS to openIMIS [48]

Eventually , in 2016, in cooperation with the German Development Cooperation7 (GDC) and

under the coordination of the Gesellschaft für Internationale Zusammenarbeit8 (GIZ), the

openIMIS initiative was founded, which licensed IMIS as an open source software, openIMIS

was born. Shortly after, further countries joined the community.

Due to the rapid growth and success of openIMIS, it was decided in 2019 to design the

architecture in a modular way, in order to be able to adapt the requirements of the schemes

of the di↵erent countries faster and more e�ciently.

Figure 1.2: Current countries using openIMIS [49]

7 O�cial website of the BMZ [1]
8 O�cial website of the GIZ [5]

Introduction 4

1.2.4 System Description
The system works through a centralized server where people with administrator rights can

log in to get access to the various functions.

Figure 1.3: openIMIS web application

For example, to create an insurance scheme, follow the functions in Figure 1.3 step by step,

starting with the locations. However, a detailed tutorial9 is given on the o�cial YouTube

channel of the openIMIS Initiative, which explains the system in practice.

Once one has gone through these steps, the generated data must now be sent to other

systems, such as various health facilities. This data exchange is guaranteed by HL7 FHIR.

9 openIMIS Demo video on YouTube [46]

Introduction 5

1.3 HL7 FHIR
Fast Healthcare Interoperability Resources10 (FHIR) is, as already mentioned, an open iter-

operability standard framework for the exchange of data between healthcare organizations

and their computer systems. It was published by Health Level Seven International (HL7),

a non-profit organization, in the year 201411. The current version FHIR R4 (Release #4)

was released on the 30th October of 2019.

1.3.1 Resources
FHIR uses di↵erent modular components, called ”resources”, for health record classification

with which it transmits information in small fragments. To understand what resources are,

you can think of them as tables in SQL databases that are linked to other tables, that is,

other resources.

Currently there are 146 resources, divided into di↵erent categories, such as financial or

clinical, but which all have the same structure.

1.3.1.1 Structure
The resources are structured like folders, in which there are fields as well as composite fields.

Each field and composite field has a cardinality that describes how often they can occur.

There are four di↵erent cardinalities:

• (0..1) - a field can occur once or not at all

• (0..*) - a field is a list that can have several values or none at all

• (1..1) - a field must have a single value

• (1..*) - a field is a list which must have one or more values

In addition, each field and composite field has a type, which is either a primitive or complex

type. The primitive types are those that have only one value and no additional elements as

children, for instance integers or strings. Complex types, on the other hand, have the same

folder-like structure as the resources and also include fields that consist only of primitive

types.

10 O�cial FHIR website [3]
11 Wikipedia page of FHIR [4]

Introduction 6

Figure 1.4: Structure of the Location resource [2]

Each of these types has its own type, which is the Element and represents one of the two

highest instances. The Element is also the type of the BackboneElement, the types of the

composite fields. Besides the Element, the second structure, which has neither cardinality

nor type, is the Resource type. However, it should not be confused with the resources

mentioned above. This base Resource is the basis of all other resources and is the type of

the DomainResource.

1.3.1.2 JSON Representation
To read the resources in human understandable languages they can be accessed by request-

ing information from an FHIR server using a pull method. When data needs to be displayed,

a request for a specific resource is sent to the FHIR server. This resource can be returned

Introduction 7

in two di↵erent formats on the web browser, XML (Extensible Markup Language) or JSON

(JavaScript Object Notation), where openIMIS supports the JSON representation. De-

pending on the implementation you can perform di↵erent actions when connecting to the

RESTful API (Representational State Transfer Application Programming Interface) server.

Example given, you can filter resources by their unique identifier with the URL in this form

[baseURL]/[resource]/[id], which is a field in the resource structure.

This is an example of a JSON representation of the Location resource from Figure 1.4:

Figure 1.5: Json representation of the Location resource from openIMIS

In this case we have a URL which looks like this: [baseURL]/Location/8ACF51CF-EB6D-

44DB-AED5-75412408E791

Introduction 8

1.3.2 Codes
If codes are given in a resource, the types Code, Coding or CodeableConcept are used.

These contain the code, which is represented by a pair of ”system” and ”code”. The ”code”

is the actual value of the code, where the ”system” is a URL that defines the Code System

in which the code value is located. Within the Code System there is the Value Set. This

indicates which possible code values are contained in the Code System.

Figure 1.6: Value Set Location Physical Type [14]

This value set is shown in Figure 1.5 under physicalType.

1.3.3 Extensions
In case you need a field which does not originally appear in the resource, you can use

extensions.

Figure 1.7: Structure of an Extension [13]

Extensions form a separate composite field which can contain several complex or primitive

types. Each of these types is defined by an URL and a value. The name of the type is

appended to the value, so you can see which type was used.

1.4 Process of the project
Now that we have all the information about the di↵erent components of this work, we come

to the actual procedure of my project.

This project has four steps, which I had to achieve. These are:

Introduction 9

1. Become familiar with the existing openIMIS implementation and HL7 FHIR (versions

3 and 4).

2. Provide a mapping from relevant fields of the most popular and relevant hospital

management systems and openIMIS, with focus on the fields and attributes that are

so far not yet supported.

3. Integrate support for HL7 FHIR version 4 into openIMIS (back-end implementation

in python).

4. Develop a tool for the transfer of data from the openIMIS database to a FHIR database

through the new developed FHIR version 4.

The first point can be seen as an introduction to the project, where I should first of all

familiarize myself with the code for the integration of FHIR version 3 and get a feeling for

the di↵erences between the two FHIR versions. This point also includes the installation of

all required programs.

The next two points can be taken together, since mapping resources requires FHIR R4 to

be already integrated.

Last but not least, a program should be written which transfers the data from the openIMIS

database to a new database which has the structure of the FHIR resources.

2
Preparation

Before you can start with the actual work, the mapping of the resources and the transfer

of the database, you have to fulfill several requirements to install all needed programs and

start openIMIS.

2.1 Requirements
2.1.1 Operating System
Because the current implementation of openIMIS uses the Microsoft SQL Server12, the

system can currently only run on Windows devices. Of course, a possibility is to install the

server on Mac OS or Linux with the Docker13 program, but then important applications like

the SQL Server Management Studio or the SQL Server Configuration Manager are missing.

It is also recommended to use an administrator account, because for many files the user

needs access rights.

2.1.2 Microsoft SQL Server 2017
To be on the safe side it is recommended to download the 2017 version of the Microsoft SQL

Server, because openIMIS was developed and tested especially with this version. The reason

for this is explained in the next section. Since recently the developer version of Microsoft

SQL Server 2017 can be downloaded directly from the openIMIS wiki page14.

2.2 Setting up openIMIS
The installation of the two openIMIS versions, the legacy and the modular version, was

probably the most tedious work of the whole project, because many problems occurred in

the process which took a lot of time to fix.

12 O�cial website of the Microsoft SQL Server [15]
13 O�cial website of Docker [12]
14 openIMIS Database Installation wiki page [16]

Preparation 11

For the installation I made use of the openIMIS wiki15 page, which contains a guide that

goes through every step.

Since I generally use Mac OS and I am most familiar with this operating system, I wanted

to download openIMIS on an Apple computer.

I started with the modular version. The first step was to download all the required repos-

itories, which can be found on the openIMIS GitHub16 site and directly linked on the

installation guide for the modular version on the openIMIS wiki page17, as well as installing

the openIMIS demo database which is needed to have any entries in the webapp.

Downloading the Microsoft SQL Server was not a challenge at the beginning because I

created a container with Docker and started the server on the terminal with a virtual envi-

ronment. When the gateway, which connects the frontend with the backend server, caused

problems by not being able to create a running container, I finally switched to a Windows

device, where I hoped to get the setup done quickly.

In one of our weekly meetings it turned out that the modular version is dependent on the

legacy version and should therefore be installed first. So I installed the legacy version first.

The installation and configuration of the SQL server, the openIMIS demo database18, and

the IIS (Microsoft Internet Information Services) was very quick and easy. When I finally

changed the permissions in the event logs and start the web application, I could not connect

to the server. I found an error message on my web page that denied me access because

I allegedly had no rights, although I followed exactly the points from the manual. After

some searching I found out that in the Registry Editor not only the EventLog folder and

the Security key it contains must have administrator rights, but also the State key. After

this change the legacy version worked fine.

Now it was the turn of the modular version, which only required the download of six mod-

ules, an adaptation of the .env file by system variables that formed a link to the database

and a few terminal commands.

But this did not work as easily as expected, because the modular version has to be installed

individually to each user. Fortunately Patrick Delcroix found time to work with me on this

problem. It took us half an afternoon to fix the error messages Patrick Delcroix had not

seen before and to establish a connection.

The disillusionment followed one day later, when all of a sudden error messages appeared

again and nothing worked anymore. It appeared that the database drivers were designed

for the SQL Server 2017 version and I was running the latest Microsoft SQL Server 2019.

Once the SQL Server is on the device, it is very di�cult to uninstall. It took me a whole

week to get the 2017 version up and running, because the protocols for the server could not

15 Installation Manuals for the modular and legacy version of openIMIS [17]
16 O�cial openIMIS GitHub page [18]
17 Installation guide for the modular version of openIMIS [19]
18 Repository for the openIMIS databases [45]

Preparation 12

be started. I then decided to reset my whole computer, otherwise it would not have worked.

After a successful reinstallation of the server, but now the SQL Server 2017 version, I went

through the whole procedure from the beginning and came back to the point, that the in-

stallation of the modular version causes problems.

Since Michel Borer, as before with the legacy version, had to struggle with the same prob-

lems, Dragos Dobre and Patrick Delcroix decided to install the modular version together

with us, so that we could finally start with the actual work. For Michel the installation

worked, but for me the time was not enough, because I had to deal with error messages once

again.

In the meantime Dragos Dobre developed a development tool19 which directly downloads

and installs the necessary modules from PyPI20 (Python Package Index) I need for my work,

like the openIMIS backend and the FHIR modules. After some initial problems we sat down

together and finally managed to get the modular version running. We initialized the system

variables as local variables on Windows, but we did not consider the port, because it was

probably in conflict with another port.

After a long and tedious setup, both versions were running perfectly, so the next and main

part, the programming, could begin.

19 GitHub link to the development tool repository [20]
20 O�cial webiste of PyPI [33]

3
Development

The development is divided into three parts, the first part being the integration of FHIR

R4 into the openIMIS system. This is the logical step, as the mapping of resources re-

quires a base to start with. Further, I will explain the mapping process and finally the

implementation of the migration tool.

3.1 Architecture of the FHIR version 3 module
To fully understand how the FHIR API module works, it is important to first understand

how it is constructed.

The module api fhir21 contains eight directories and seven files, which are all connected to

each other, and whereby I explain the most important ones in a more precise way.

Figure 3.1: Structure of the api fhir module

21 Link to the openimis-be-api fhir py repository [22]

Development 14

3.1.1 Configurations
In the Configurations folder22 there are various configuration files, which are used to im-

plement the required codes for the individual resources. These codes either originate from

the value sets of FHIR or are self-generated codes that are used specifically for openIMIS.

These configuration sets are passed on in the apps.py23 script as a default list to the mod-

uleConfiguration.py24 script, which then creates the configurations.

3.1.2 paginations.py
From the previously mentioned configurations the generalConfiguration.py25 script, which

contains default values for the API’s, is passed to the paginations.py26 script. This script

then creates the bundle resource in which it inserts the data of the mapped resources.

It also describes the layout of the webpage with the values it got from the generalCon-

figuration.py script. For example how many entries there are on a page and how to edit

them.

3.1.3 Models
The files in this folder are the interface between the various FHIR resources and the mapping

of those just mentioned. In each of these files a one-to-one representation of the folder-like

structure of the resources is created.

Figure 3.2: Implemented structure of the Location resource

22 Link to the configurations directory in GitHub [24]
23 Link to the apps.py script in GitHub [23]
24 Link to the moduleConfiguration.py script in GitHub [28]
25 Link to the generalConfiguration.py script in GitHub [26]
26 Link to the paginations.py script in GitHub [29]

Development 15

Figure 3.3: FHIR structure of the Location resource [21]

Each field is defined as a property that contains the name of the field, the types and, de-

pending on which one is defined, the cardinality. The cardinality (0..1) is ignored, where

cardinality (0..*) is set as count max=’*’ , cardinality (1..1) as required=True and the

cardinality (1..*) as count max=’*’, required=True together.

The BackboneElements are declared in their own field in the resource, where this field points

to the generated BackboneElement, which was created as a separate class. Thus, for every

resource, every element and every complex type that is required, a representation in the

code is mandatory.

3.1.4 Converters
The converters are the main files when it comes to mapping the resources. Thereby each

resource has its own converter which maps the data from the openIMIS database to the

corresponding field of the FHIR resource and vice versa.

The database data is defined in separate modules, such as the openimis-be-location py27

module, which itself has a model.py file where the columns of the database are initialized

in tables. These tables can then be imported into the converter and the values in them

accessed. But it is essential that the types of the database columns correspond to the types

of the FHIR field.

I will go into more detail about the converters in the mapping section.

27 Link to the GitHub repository of openimis-be-location py [27]

Development 16

3.1.5 Serializer
The FHIR, as well as the openIMIS conversions that were previously created, are then used

in the serializer to map the fields and their data to the API. Here, each FHIR field with

values is then added to an instance list which is returned to the views.py script.

3.1.6 permissions.py
In this module there are permissions for five HTTP methods to interact with the FHIR

API. These are the GET, POST, PUT, PATCH and DELETE methods, although not all

resources have permission to use each method.

• GET: A resource is requested from the server

• POST: Resources or data are sent to the server

• PUT: A resource is uploaded to the server using a target address

• PATCH: A set of instructions on how to modify resources

• DELETE: A resource is deleted from the server

In the permissions.py28 script a set of permissions is created for each resource that will be

displayed in the FHIR API. Which method is allowed is defined in the configuration in the

module of the respective resource, which then imports the permission.py script and returns

it to the view.py script, too.

3.1.7 views.py
The views.py29 script receives the serializer and permissions of all resources and creates a

view set for each of them. A look up field is defined, which usually contains the UUID, a

unique identification number, with which the individual resources, respectively the rows of

the database, can be filtered.

3.1.8 urls.py
With the urls.py30 script a framework router is used to create the URL’s, which are stored

as a register. In this register are the names of the resources on the URL link, the view sets

imported by the views.py script, and a basename. This basename is used to ensure that the

URL is unique and does not lead to another resource that might have the same name.

28 Link to the permissions.py script in GitHub [30]
29 Link to the views.py script in GitHub [32]
30 Link to the urls.py script in GitHub [31]

Development 17

3.2 Access to the FHIR API
To get access to the FHIR API a superuser for the backend server had to be created first. For

this, change to the openIMIS folder of the backend module, where the manage.py31 script is

located and activate the virtual environment. If a user starts this script with the command

python manage.py createsuperuser , he will be asked for a username and a password, which

he creates himself. To run the server the command python manage.py runserver has to be

launched.

Once the login credentials have been created and the server is running, the user has to log

in at http://localhost:8000/admin to get the authorization to view the data in the API.

When everything is done, the FHIR API can be accessed via http://localhost:8000/api fhir.

3.3 Integration of FHIR R4 into openIMIS
With the intention to create the FHIR R4 API and build on it, I duplicated the module

api fhir in the same directory and just renamed it to api fhir r4. In this new module I

changed every name that had something to do with version 3 as well as the imports from

api fhir to the new module.

At the beginning, I only wanted to use the link http://localhost:8000/api fhir r4/ to get to

a new page which belongs to the FHIR R4 API and which contains api fhir r4 in the base

URL’s of the resources. I created the page, but every link of the API redirected me back to

version 3.

With a bit of trial and error I finally found out that the basename from the urls.py script

was the same as the one of the original module. With the renaming of the basenames I had

a working API for version 4, which I could update step by step with the mapping of the

new resources.

3.4 Mapping
Now that I have a base to work on, we come to the major part, the mapping.

In the beginning the goal was to adapt the resources already mapped from version 3 to the

new version. Besides, I should document my progress on the openIMIS wiki page32. I took

over the wiki documentation from FHIR v3 and updated it according to my tasks. On the

wiki page is a table for each resource, which shows which FHIR field has to be connected to

which openIMIS database field. These tables were created by Dragos Dobre so that I and

other people know how the resources were mapped. They also served me as a guide and

checklist.

The resources that had to be mapped at that time were Claim, ClaimResponse, Coverage,

Patient, Practitioner, PractitionerRole, Location, CoverageEligibilityRequest, CoverageEli-

31 Path to the manage.py script: openimis-be py/openIMIS/manage.py
32 FHIR R4 mapping wiki page [25]

Development 18

gibilityResponse and CommunicationRequest.

But before I could start with the actual mapping, the first logical step was to check the

resources from the models directory and if necessary remove fields that are not needed or

add fields that do not exist yet. This was not very demanding work, as it was actually

a straightforward approach. However, it helped me to better understand the structure of

the resources, especially the composition of the di↵erent elements and complex types. This

didn’t take very long and once that was done, I was able to deal with the converters, since

they are the foundation of the mapping.

In principle, each of these converters has the same design.

The structure is as follows:

class ExampleConverter(BaseFHIRConverter, ReferenceConverterMixin):

@classmethod

def to_fhir_obj(cls, imis_example):

fhir_example = ExampleResource()

cls.build_fhir_pk(fhir_example, imis_example.uuid)

cls.buld_fhir_test_field(fhir_example, imis_example)

return fhir_example

@classmethod

def to_imis_obj(cls, fhir_example, audit_user_id):

errors = []

imis_example = ExampleTable()

cls.build_imis_test_column(imis_example, fhir_example, errors)

cls.check_errors(errors)

return imis_example

@classmethod

def get_reference_obj_id(cls, imis_example):

return imis_example.uuid

@classmethod

def get_fhir_resource_type(cls):

return ExampleResource

@classmethod

def get_imis_obj_by_fhir_reference(cls, reference, errors=None):

example_uuid = cls.get_resource_id_from_reference(reference)

return DbManagerUtils.get_object_or_none(ExampleTable,

uuid=example_uuid)

Development 19

The five methods shown in the example code are used in practically every converter. The

first two, the to fhir obj() and the to imis obj(), methods are probably the most important.

These are initialized by the BaseFHIRConverter and are used to collect fields of the resource

or the columns of the database table and pass them on as a whole resource and whole table.

In addition, the to fhir obj() method always contains the function build fhir pk(), which is

also initialized by the BaseFHIRConverter and defines which column of the database table

is the primary key.

As mentioned above, depending on the number of fields required in a resource, you can have

multiple methods that map the values of a database table to a resource field. An example

of a function found in the to fhir obj() method looks like this:

@classmethod

def build_fhir_test_field(cls, fhir_example, imis_example):

if imis_example.patient_name is not None:

fhir_example.name = imis_example.patient_name

Here the names of patients found in the ExampleTable are mapped to the name field of the

ExampleResource. If the API allows a POST method for this resource, you must also map

it the other way around. The same resource field and the same table column are being used.

@classmethod

def build_imis_test_column(cls, imis_example, fhir_example, errors):

name = fhir_example.name

if not cls.valid_condition(name is None,

gettext('Missing example `name` attribute'), errors):

imis_example.patient_name = name

This is the way to map fields that only take the value of the database tables directly. At

this point I would like to mention three special cases.

CodeableConcept

Of course, it is possible to map CodeableConcepts like all other fields, but there is a special

function which automatically creates the structure of the CodeableConcepts.

@classmethod

def build_fhir_example_codeable_concept(cls, fhir_example, imis_example):

fhir_example.code = cls.build_codeable_concept(code, system, text)

This function takes the three values ”code”, ”system” and ”text”, where the code is the

actual code from the database table. The system is a URL, which links the value set of the

code. The text is in most cases either a description of the code or its full name.

Development 20

Reference

Since we already know what a reference is, we also need to know how it is implemented. As

with the CodeableConcepts there is a separate function for this.

@classmethod

def build_fhir_example_reference(cls, fhir_example, imis_example):

fhir_example.location = LocationConverter.

build_fhir_resource_reference(imis_example.location)

We know that almost every converter has the get reference obj id() method which defines

the key for the references. If we now create a reference to the location, as in the example, we

need to import the LocationConverter and apply the build fhir resource reference() function

to it. By doing so, we get back a reference value, the value which the LocationConverter

defines in its get reference obj id() method.

The ExampleTable also needs a link to the LocationTable. In this case the ExampleTable

has a foreign key which points to the LocationTable ID.

Extension

The extension is a list that contains fields that do not occur in the resource. First, an

extension field is initialized with the desired type, as value plus the type name, whereby the

type is also initialized if you want to specify the exact values. In addition, each extension

has a URL, which can be a link to a page or just the name of it. Then all extensions created

are appended to the FHIR resource.

@classmethod

def build_fhir_example_extension(cls, fhir_example, imis_example):

extension = Extension()

extension.url = "valueCodeableConcept"

extension.valueCodeableConcept = cls.

build_codeable_concept(code, system, text)

fhir_example.extension.append(extension)

In this example I combine the extension with a CodeableConcept. Here the type is not

initialized, because we have a function which directly creates a CodeableConcept.

The next three methods are all initialized by the ReferenceConverterMixin class. The

get reference obj id() method determines which value is used in case of a reference to this

class. References have this form in openIMIS: Resource Name/Reference Value .

This means that if another resource needs the ExampleResource as a reference, the resource

name is then ExampleResource and the reference value in this case is the UUID of the Ex-

ampleTable.

get fhir resource type() merely indicates the type of this resource.

The last method, get imis obj by fhir reference(), returns the database object that has the

searched reference value of the resource if there exists one.

Development 21

3.4.1 Mapping process
I started mapping the CoverageEligibilityRequest because Dragos Dobre warned me that

this resource was previously only called EligibilityRequest and this name change had a big

impact on the whole mapping of it. As it turned out this was not the best idea, because

I still did not understand the code exactly and because this resource did not allow a GET

method, which made it di�cult to test and control the correctness, I should have started

with a resource that is easier to map. Somehow, after some time, I managed to map it

successfully, which in retrospect gave me a better understanding of the implementation.

While I was still very early in the mapping process, the first adjustments of the fields in

the resources and three new resources to be mapped had already been made. So I had

to map the Condition, Medication and ActivityDefinition resources, because they are very

important for the Claim resource.

In the Condition resource the diagnoses of the patients were stored, in Medication the items

like tablets or pills, which the patients have been prescribed, and in ActivityDefinition the

services, i.e. surgery or other measures. These fields are specified for each patient in the

claim resource as a list, which also has the reference to the specific resources.

Because HISP India33 (Society for Health Information Systems Programmes) needed these

resources for its work, the focus was now on these three resources. At the same time it

was decided that I did not need to map the Coverage and the associated Contract resource

because it was taken over by another organization.

With the Medication Resource finally came the breakthrough, with which I fully understood

the principle of mapping.

With the completion of these three resources I had to create the view sets and permissions,

so that you can reach them in the API with a URL. To do this, I first had to create the cre-

ate() and update() methods in the serializer. I built them by copying a serializer script of an

already mapped resource and modifying it with the respective values of the new resources.

As with the serializers, I copied the permissions of other resources to create new ones. But to

create these permissions, I had to import them from the openimis-be-medical py34 module,

as they were defined there. Because they were not fully implemented, I could only specify

the GET method.

Next I had to implement the view sets of the resources. At the example of the Medication

Resource you can see how such a class looks like.

class MedicationViewSet(BaseFHIRView, mixins.RetrieveModelMixin,

mixins.ListModelMixin, GenericViewSet):

lookup_field = 'uuid'

serializer_class = MedicationSerializer

permission_classes = (FHIRApiMedicationPermissions,)

33 O�cial website of HISP India [36]
34 Link to the GitHub repository of openimis-be-medical py [39]

Development 22

def get_queryset(self):

return Item.get_queryset(None, self.request.user)

The get queryset() method is created in the models script of the corresponding modules.

This query set is then returned with the data requested by the database user.

The structure of these classes is the same for each resource. Usually the UUID of a table is

used as look up field to filter the resources, but this does not exist for the condition resource.

In this case the condition ID is used.

The last resource to be recreated was the HealthcareServices resource. This takes the values

of the HealthFacility table from the database. Because the HealthFacility table and the

Location table were originally mapped together in the Location resource, both resources

had to be rewritten with the individual tables. But since I already mapped a large number

of fields, this was not a big work and therefore did not take much time.

Before I could start implementing the data migration tool, I had to map more necessary

fields, because it was thought that they would not be needed, as well as test and fix bugs

on the whole mapping.

3.5 Data Migration Tool
The objective of the migration tool is to transfer the data from the API into a new database,

which, unlike the openIMIS database, has the structure of the FHIR resources.

3.5.1 Database Management System
Since the openIMIS initiative wants to move away from the expensive Microsoft SQL Server

and Michel Borer in his Bachelor thesis ”Database Migration in the openIMIS open source

Health Insurance Management System”35 had the task to migrate the openIMIS database

to a PostreSQL36 database, I logically also used PostgreSQL for my migration tool.

So I downloaded PostgreSQL from the o�cial website. The installation included the pgAd-

min software, which provides a graphical user interface to create and manage PostgreSQL

databases. In this one I created a new user, so I don’t have to deal with the default settings.

The next step was then to figure out how to convert the resource data from the API so that

I could use it in my code.

Dragos Dobre suggested fhirbase37, an open source software based on PostgreSQL. After

some experimentation, it turned out that fhirbase only supports FHIR version 3 and this

tool did not meet the requirements we had for the database anyway, although it creates a

database directly with the FHIR resources.

35 openIMIS wiki page for Michel Borer’s Bachelor thesis [40]
36 O�cical PostgreSQL website [43]
37 O�cial fhirbase website [34]

Development 23

After searching in futile for alternatives, we decided not to use an existing FHIR database

but to develop a database structure based on the mapping.

For this reason, Claudia Saupper suggested a package called fhir.resources38 in one of our

weekly meetings. This package allows you to create resource objects from JSON represen-

tations and also to save them in a JSON format.

To work with this package one must first install it with pip install fhir.resources . Firstly,

I wanted to create a simple resource object and print the values in it. So, I wrote a test

JSON file with a resource in it and loaded the data into the resource object. This worked

very well, thus I wanted to create a database with a table in Python. Now in order to

work with PostgreSQL in Python you have to import the ”psycopg2” library and establish

a connection with the created user to PostgreSQL.

The issue then was that when a database was created in a script, you could not connect to

it in the same script. Because I couldn’t find a solution to this problem and to save time,

I manually created a database on pgAdmin. In the meantime Dragos Dobre asked me if it

would be possible for me to implement a tool that stores the API data directly as a JSON

file.

3.5.2 JSON File Creator
The tool to create JSON files needs a connection to the API to collect data from it with a

GET method. To do this you import the library requests.

req = requests.get(url, auth=HTTPBasicAuth(user, password))

With the requests library you can then use the get() function, which is passed a URL

and authentication credentials. In our case the URL is the one that leads to a resource

in the API, for example http://localhost:8000:api fhir r4/Location/ and the username and

password are the ones you need to log in to http://localhost:8000/admin/. Then you can

use the imported json library to assign the request as text to a variable.

data = json.loads(req.text)

But because every API consists of several pages you have to know how much data has to

be inserted into the JSON files. For this I wrote a function which returns the maximum

number of page numbers.

38 fhir.resources package on PyPI [35]

Development 24

It works like this:

size = 1

req = requests.get(url, auth=HTTPBasicAuth(user, password))

next_site_url = url + pageOffset

while req.status_code != 404:

size += 1

url = next_site_url + str(size)

req = requests.get(url, auth=HTTPBasicAuth(user, password))

continue

return size - 1

openIMIS has a variable in the API URL which indicates on which page you are currently

located and is described as page-o↵set= with a number at the end. I first create a URL

for the next pages using the URL that the function was passed to, then add the page o↵set.

Then I run a while loop until it gets beyond the last page and receives an HTTP error code

404. Since in the loop a counter was added by 1 after each pass, we can return it subtracted

by one, because we do not care on which page we got the error, but how many pages worked.

In the main function I run a loop which runs until the maximum number of pages is reached.

Within this loop I make a GET request for each page in the API and store the data in a

new variable. Because each page contains the data in a Bundle resource, we have to ignore

it from the second page on, because we only want one Bundle with all entries of a resource.

Since we use the data in JSON format, we can simply apply the get() function to our data.

In this get() function we then determine what we want to have from the Bundle. With

’entry’ in the function, we can filter everything in the entry list, which represents the list of

the Bundle resource.

while page < last_page:

page += 1

url = next_site_url + str(page)

req = requests.get(url, auth=HTTPBasicAuth(user, password))

resources_next_page = json.loads(req.text)

resources_next_page = resources_next_page.get('entry')

for i in range(len(resources_next_page)):

data['entry'].insert(EOF, resources_next_page[i])

In a for loop each index in the entry list is inserted at the end of the whole file until the

data is returned.

The last step is then to create the data with a file writer and save them in a folder.

Development 25

3.5.3 Creating Database Tables
As already explained, I could not create a database with python, so I went directly to the

tables. With the also mentioned psycopg2 library you connect to the database by passing

the database name, username, password, host address and port as parameters. To execute

queries, the connection creates a cursor.

connection = psycopg2.connect(dbname, user, password, host, port)

cursor = connection.cursor()

I then had to write a separate function for each resource and the subfolders in the mapped

resources, because each field of a resource has to be defined individually to map it to the

table. So you create a query for each resource by creating the table and initializing the

columns, which is done with the cursor.

query = ("""DROP TABLE IF EXISTS Location;

CREATE TABLE Location (

location_id INT PRIMARY KEY NOT NULL,

identifier VARCHAR(255) NOT NULL,

name VARCHAR(100),

physical_type VARCHAR(3),

part_of VARCHAR(255));""")

cursor.execute(query)

connection.commit()

The connection commits the changes to the database resulting in an empty table. To insert

the values into the table, I read the JSON files I created with the first tool and put them

into the Bundle of the imported fhir.resource package.

from fhir.resources.bundle import Bundle

bundle = Bundle(data)

In bundle is now the whole structure of the resources within the entry list. Over the length

of this list the values of a resource can be looped to insert them into a row of the table.

This is done with a for loop in which the actual resource is defined. Here it is the location

resource.

The next step is to define the values to be inserted into the table. This is described with

an SQL query, where I then have to filter the values from the resource and connect them to

these values.

Development 26

for i in range(len(bundle.entry)):

location = bundle.entry[i].resource

insert = ("""INSERT INTO Location (location_id, identifier,

name, physical_type, part_of)

VALUES (%s,%s,%s,%s,%s)""")

Up to this point, the procedure in each function is exactly the same, except that you have

di↵erent fields in the resource. From here on, you have to filter and initialize each field

separately, paying attention to which fields are mandatory for the resource and which may

or may not occur.

gender = patient.gender

address = None

if patient.address is not None:

if addr := [x for x in patient.address if x.type == "physical"]:

address = addr[0].text

In this example from the Patient Resource you can see that the gender field has a cardinality

of (1..1) and must appear in the resource. Therefore, you can initialize it directly.

On the other hand, we have the address, which does not necessarily occur. First you have

to check if this value occurs, if not you give the table a null value. If it occurs then we

have to filter it, because most of the fields are in a list. Here fields like the ”text” in the

CodeableConcepts help us, because they describe the code but are not inserted into the

tables.

Once this is done, you can insert the values into the table with the cursor and commit the

changes with the connection.

data_to_insert = (gender, address)

cursor.execute(insert, data_to_insert)

connection.commit()

But what has to be considered is that if you add or remove fields to the API in the mapping

step, you will have to integrate these fields into the database manually by going through these

steps again. This happened to me a lot during the implementation of this tool, because some

resources had mandatory fields that were not needed by openIMIS, but the fhir.resources

package gives an error message because these fields are missing. That means I still had to

deal with the mapping during the implementation of the migration tool, which was not a

bad thing. With the fhir.resources package I was able to find and fix many small bugs in

the mapping.

Development 27

3.5.4 Merging Both Tools
Because I created the database tables with the locally generated JSON files, Dragos Dobre

wanted me to read the data the same way I did in the JSON Creator Tool, via the API,

and to put both tools into one script. First I cleaned up the code of the JSON Creator Tool

and made it more compact by creating all files with one function. I did this by giving the

function a global list of resource names and attaching them to the URL. I also added the

functionality to automatically delete the files and the folder they are in, if it exists. That

means you can create the current state of the data automatically without having to delete

the data manually.

To get the data for creating the tables through the API, I used the same function I used to

create the JSON.

Last but not least, I created two classes for the respective tools. In the first class there is

a function, which creates all tables in order. Beside the function I created a directory with

which I can choose in the main method which table I want to create individually. In the

second class there are two functions which either creates the folder and writes the files or

deletes them first and then rewrites them updated again.

And finally, to have a tool that is easy to use, I built a small dialog on the console that tells

the user what to do to get the desired end product.

3.5.5 How to use it?
The Data Migration Tool can be downloaded directly from the openimis-fhir-data-migration py39

repository in GitHub. You can also find a detailed documentation on the openIMIS wiki40

page of the tool. Since this tool depends on the FHIR R4 API, the backend server must be

started before running.

At the beginning of the code you can adjust the global variables according to your settings,

and specify the directory where you want to store the JSON files.

To run the tool on the console of e.g. PyCharm41, you have to go to the execution settings

there. This can be reached by clicking on ”Run” in the upper menu and selecting the option

”Edit Configurations...” there. In the window which is now open, enable the ”Emulate

terminal in output console” checkbox. The reason for this is that the imported library

getpass will not work on the console until you set this function. If you use the terminal it

does not need any settings.

39 openimis-fhir-data-migration py repository link [41]
40 openIMIS wiki page for the Data Migration Tool [42]
41 PyCharm page of the o�cial JetBrains website [37]

Development 28

(a) Start Dialogue (b) After pressing 1

Figure 3.4: Dialogue on the Console

After starting the program the dialog from Figure 3.4 (a) appears, where you can decide

what you want to do. If you enter 1, more instructions will appear (Figure 3.4 (b)). Here

you first have to connect to the database. If you have a local database you can leave the

host and port empty. Once connected you can decide if you want to create all tables at once

or just one at a time. If you do not want to create all tables, a list of possible tables will be

displayed.

If you choose to create the JSON files, they will be created immediately after you press 2.

When a task is done, you will be taken back to the start dialog where you can do more

things or end the program by pressing 3.

3.6 Publishing the openIMIS FHIR R4 Module
To finish my project, my last task was releasing my self-created module on PyPI.

For this, I first needed my own GitHub repository. I cloned the openimis-be-api fhir r4 py42

repository created by Dragos Dobre in the directory where all other modules were located

and moved the FHIR R4 module from the previous version’s folder. Because this module is

now no longer recognized, I had to install it, as described in the README.md file in the

openimis-be py repository, by the command pip install -e ../openimis-be-api fhir r4 py/ .

The next step was to push a tag with the version number to GitHub. To complete the

release you needed an account on PyPI and two packages to install.

42 openimis-be-api fhir r4 py repository link [38]

Development 29

The first one is the wheel package which creates the module. Running python setup.py bdist wheel

will run the setup.py script that describes the module.

The second package is twine. As before you install it with pip install twine . To upload

the module to the PyPI site, run twine upload -r pypi dist/openimis be mymodule-1.2.3* .

Here you name your module and add the version number described in the tag.

Now you can easily install the openimis-be-api-fhir-r4 1.0.043 package via pip.

43 Self created openIMIS FHIR R4 package [44]

4
Conclusion

4.1 Conclusion
The aim of this thesis was to develop an integration of the current FHIR R4 version to the

openIMIS system for the Swiss Tropical and Public Health Institute (Swiss TPH), which

can run alongside version 3. The objective was to map the most important fields of relevant

hospital management systems and access the data through an API. In addition to this, a

migration tool was developed, which besides creating database tables with the structure of

the mapped resources, also writes the data of these resources as JSON files.

With the completion of the project, there are two products that can be used by the entire

openIMIS developers community. Firstly, openIMIS is running with the latest version of the

FHIR R4 framework and secondly, the data from this newly mapped version can be clearly

displayed in a database or as JSON files using the Data Migration Tool.

This Bachelor thesis can be seen as a guideline for future mapping tasks and developments.

It shows step by step the structure of the whole process.

Starting with the installation of the openIMIS system, it was also a test to see what dif-

ficulties inexperienced users have to start the system. With the discovered shortcomings

the installation guide was immediately updated so that there will be no problems for future

installations.

In addition, this thesis provides a detailed description of the FHIR structure, as well as the

architecture of the openimis-be-api fhir r4 module, to make it easier for developers to get

started, as the code itself is not very well documented.

Overall, the project was completed successfully and satisfactorily, whereby it was an honour

for me to work together with the Swiss TPH and the openIMIS Initiative.

4.2 Future Work
The first version of the module contains the most relevant resources for the moment, but

due to the large number of resources and fields there are still many that can be mapped.

Thereby the mapping of the fields in the code can be improved qualitatively with a compact

Conclusion 31

code style. I have agreed to be part of the openIMIS developers community and to continue

working on the FHIR R4 integration, so that this points can be tackled.

If new fields are added to the mapping, they must also be added in the Data Migration Tool.

A solution can be found to integrate the fields into the database tables more automatically,

as well as finding a way to convert resources from the API directly into tables.

In addition, a way can be found to optimize the writing of the JSON files. Since there are

over 35’000 claim entries in the real world usage, the memory is very strained, which means

that writing takes a long time.

Bibliography

[1] O�cial website of the bmz. https://www.bmz.de/en/index.html, 12.07.2020.

[2] Structure of the location resource. http://hl7.org/fhir/location.html, 12.07.2020.

[3] O�cial fhir website. http://hl7.org/fhir/, 12.07.2020.

[4] Wikipedia page of fhir. https://en.wikipedia.org/wiki/Fast Healthcare Interoperability Resources,

12.07.2020.

[5] O�cial website of the giz. https://www.giz.de/en/html/index.html, 12.07.2020.

[6] O�cial openimis website. https://www.openimis.org/, 12.07.2020.

[7] O�cial website of the sdc. https://www.eda.admin.ch/deza/en/home/sdc.html,

12.07.2020.

[8] O�cial list of sdg indicators. https://unstats.un.org/sdgs/metadata/, 12.07.2020.

[9] Wikipedia page of sdg. https://en.wikipedia.org/wiki/Sustainable Development Goals,

12.07.2020.

[10] O�cial website of the swiss tph. https://www.swisstph.ch/en/, 12.07.2020.

[11] German wikipedia page of the swiss tph. https://de.wikipedia.org/wiki/Schweizerisches Tropen-

und Public-Health-Institut#Forschungsschwerpunkte und Struktur, 12.07.2020.

[12] O�cial website of docker. https://www.docker.com/, 13.07.2020.

[13] Structure of an extension. https://www.hl7.org/fhir/extensibility.html, 13.07.2020.

[14] Value set location physical type. http://hl7.org/fhir/valueset-location-physical-

type.html, 13.07.2020.

[15] O�cial website of the microsoft sql server. https://www.microsoft.com/de-de/sql-

server/sql-server-downloads, 13.07.2020.

[16] openimis database installation wiki page. https://openimis.atlassian.net/wiki/spaces/OP/pages/

906592471/WA2.1+Database+installation, 13.07.2020.

[17] Installation manuals for the modular and legacy version of openimis.

https://openimis.atlassian.net/wiki/spaces/OP/pages/786104344/Installation

+and+Country+Localisation, 13.07.2020.

Bibliography 33

[18] O�cial openimis github page. https://github.com/openimis, 13.07.2020.

[19] Installation guide for the modular version of openimis.

https://openimis.atlassian.net/wiki/spaces/OP/pages/963182705/

MO1.1+Install+the+modular+openIMIS+using+Docker, 13.07.2020.

[20] Github link to the development tool repository. https://github.com/openimis/openimis-

dev-tools/tree/developinitializing-modular-be-in-windows, 14.07.2020.

[21] Fhir v3 location resource page. http://hl7.org/fhir/STU3/location.html, 15.07.2020.

[22] Link to the openimis-be-api fhir py repository. https://github.com/openimis/openimis-

be-api fhir py, 15.07.2020.

[23] Link to the apps.py script in github. https://github.com/openimis/openimis-be-

api fhir py/blob/master/api fhir/apps.py, 15.07.2020.

[24] Link to the configurations directory in github. https://github.com/openimis/openimis-

be-api fhir py/tree/master/api fhir/configurations, 15.07.2020.

[25] Fhir r4 mapping wiki page. https://openimis.atlassian.net/wiki/spaces/OP/pages/

1233649676/openIMIS+FHIR+R4+Overview+Page, 15.07.2020.

[26] Link to the generalconfiguration.py script in github.

https://github.com/openimis/openimis-be-api fhir py/blob/master/api fhir/configurations/

generalConfiguration.py, 15.07.2020.

[27] Link to the github repository of openimis-be-location py.

https://github.com/openimis/openimis-be-location py, 15.07.2020.

[28] Link to the moduleconfiguration.py script in github.

https://github.com/openimis/openimis-be-api fhir py/blob/master/api fhir/configurations/

moduleConfiguration.py, 15.07.2020.

[29] Link to the paginations.py script in github. https://github.com/openimis/openimis-be-

api fhir py/blob/master/api fhir/paginations.py, 15.07.2020.

[30] Link to the permissions.py script in github. https://github.com/openimis/openimis-be-

api fhir py/blob/master/api fhir/permissions.py, 15.07.2020.

[31] Link to the urls.py script in github. https://github.com/openimis/openimis-be-

api fhir py/blob/master/api fhir/urls.py, 15.07.2020.

[32] Link to the views.py script in github. https://github.com/openimis/openimis-be-

api fhir py/blob/master/api fhir/views.py, 15.07.2020.

[33] O�cial website of pypi. https://pypi.org/, 15.07.2020.

[34] O�cial fhirbase website. https://www.health-samurai.io/fhirbase, 16.07.2020.

[35] fhir.resources package on pypi. https://pypi.org/project/fhir.resources/, 16.07.2020.

Bibliography 34

[36] O�cial website of hisp india. https://hispindia.org/, 16.07.2020.

[37] Pycharm page of the o�cial jetbrains website. https://www.jetbrains.com/de-

de/pycharm/, 16.07.2020.

[38] openimis-be-api fhir r4 py repository link. https://github.com/openimis/openimis-be-

api fhir r4 py, 16.07.2020.

[39] Link to the github repository of openimis-be-medical py.

https://github.com/openimis/openimis-be-medical py, 16.07.2020.

[40] openimis wiki page for michel borer’s bachelor the-

sis. https://openimis.atlassian.net/wiki/spaces/OP/pages/

1277231105/Database+migration+to+PostgreSQL+explorative+pilot, 16.07.2020.

[41] openimis-fhir-data-migration py repository link. https://github.com/openimis/openimis-

fhir-data-migration py, 16.07.2020.

[42] openimis wiki page for the data migration tool.

https://openimis.atlassian.net/wiki/spaces/OP/pages/ 1554448385/open-

IMIS+FHIR+data+migration+tool, 16.07.2020.

[43] O�cial postgresql website. https://www.postgresql.org/, 16.07.2020.

[44] Self created openimis fhir r4 package. https://pypi.org/project/openimis-be-api-fhir-r4/,

16.07.2020.

[45] Repository of the openimis databases. https://github.com/openimis/database ms sqlserver,

17.07.2020.

[46] openimis demo video on youtube. https://www.youtube.com/watch?v=h3fj90penfUt=34s,

17.07.2020.

[47] Alexander Schulze. Introducing openimis – an open source solution for universal health

coverage. https://www.youtube.com/watch?v=6UnOnIUDXcY, 12.07.2020.

[48] SwissTPH. From imis to openimis. https://www.swisstph.ch/de/ueber-

uns/scih/sysu/health-economics-and-financing/imis/, 12.07.2020.

[49] SwissTPH. Current openimis implementations. http://openimis.org/, 12.07.2020.

A
Appendix

A.1 List of Abbreviations
openIMIS

Swiss TPH

FHIR R4

HL7

SDG

SDC

GDC

GIZ

SQL

JSON

XML

REST

API

URL

PyPI

HTTP

UUID

open source Insurance Management Information System

Swiss Tropical and Public Health Institute

Fast Healthcare Interoperability Resources Release 4

Health Level Seven

Sustainable Development Goals

Swiss Development Cooperation

German Development Cooperation

Gesellschaft für Internationale Zusammenarbeit

Structured Query Language

JavaScript Object Notation

Extensible Markup Language

Representational State Transfer

Application Programming Interface

Uniform Resource Locator

Python Package Index

Hypertext Transfer Protocol

Universally Unique Identifier

Appendix 36

A.2 List of used Modules
openimis-be py

openimis-be-api fhir py

openimis-be-claim batch py

openimis-be-claim py

openimis-be-contribution py

openimis-be-core py

openimis-be-insuree py

openimis-be-location py

openimis-be-medical pricelist py

openimis-be-medical py

openimis-be-policy py

openimis-be-product py

openimis-be-report py

https://github.com/openimis/openimis-be py

https://github.com/openimis/openimis-be-api fhir py

https://github.com/openimis/openimis-be-claim batch py

https://github.com/openimis/openimis-be-claim py

https://github.com/openimis/openimis-be-contribution py

https://github.com/openimis/openimis-be-core py

https://github.com/openimis/openimis-be-insuree py

https://github.com/openimis/openimis-be-location py

https://github.com/openimis/openimis-be-medical pricelist py

https://github.com/openimis/openimis-be-medical py

https://github.com/openimis/openimis-be-policy py

https://github.com/openimis/openimis-be-product py

https://github.com/openimis/openimis-be-report py

A.3 List of Mapped Resources
Claim

ClaimResponse

Coverage

Patient

Practitioner

PractitionerRole

Location

CoverageEligibilityRequest

CoverageEligibilityResponse

CommunicationRequest

Condition

Medication

ActivityDefinition

HealthcareService

https://www.hl7.org/fhir/claim.html

https://www.hl7.org/fhir/claimresponse.html

https://www.hl7.org/fhir/coverage.html

https://www.hl7.org/fhir/patient.html

https://www.hl7.org/fhir/practitioner.html

https://www.hl7.org/fhir/practitionerrole.html

https://www.hl7.org/fhir/location.html

https://www.hl7.org/fhir/coverageeligibilityrequest.html

https://www.hl7.org/fhir/coverageeligibilityresponse.html

https://www.hl7.org/fhir/communicationrequest.html

https://www.hl7.org/fhir/condition.html

https://www.hl7.org/fhir/medication.html

https://www.hl7.org/fhir/activitydefinition.html

https://www.hl7.org/fhir/healthcareservice.html

A.4 End Product
openimis-be-api fhir r4 py

openimis-fhir-data-migration py

openimis-be-api-fhir-r4 1.0.0

https://github.com/openimis/openimis-be-api fhir r4 py

https://github.com/openimis/openimis-fhir-data-migration py

https://pypi.org/project/openimis-be-api-fhir-r4/

Appendix 37

A.5 Mapping Tables
A.5.1 Overview Table

Figure A.1:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1233649676/openIMIS+FHIR+R4+Overview+Page

Appendix 38

A.5.2 Claim Table

Figure A.2:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389592619/FHIR+R4+-+Claim

Appendix 39

A.5.3 ClaimResponse Table

Figure A.3:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389592652/FHIR+R4+-
+ClaimResponse

Appendix 40

A.5.4 Coverage Table

Figure A.4:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389297783/FHIR+R4+-
+Coverage

Appendix 41

A.5.5 Patient Table

Figure A.5:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389133931/FHIR+R4+-+Patient

Appendix 42

A.5.6 Practitioner Table

Figure A.6:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389592716/FHIR+R4+-
+Practitioner

A.5.7 PractitionerRole Table

Figure A.7:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389592724/FHIR+R4+-
+PractitionerRole

Appendix 43

A.5.8 Location Table

Figure A.8:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389297887/FHIR+R4+-+Location

A.5.9 CoverageEligibilityRequest Table

Figure A.9:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1390182413/FHIR+R4+-
+CoverageEligibilityRequest

Appendix 44

A.5.10 CoverageEligibilityResponse Table

Figure A.10:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389297897/FHIR+R4+-
+CoverageEligibilityResponse

A.5.11 Communicationrequest Table

Figure A.11:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1389592873/FHIR+R4+-
+CommunicationRequest

Appendix 45

A.5.12 Condition Table

Figure A.12:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1399914531/FHIR+R4+-
+Condition

A.5.13 Medication Table

Figure A.13:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1400045588/FHIR+R4+-
+Medication

Appendix 46

A.5.14 ActivityDefinition Table

Figure A.14:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1400012844/FHIR+R4+-
+ActivityDefinition

A.5.15 HealthcareService Table

Figure A.15:
https://openimis.atlassian.net/wiki/spaces/OP/pages/1517617153/FHIR+R4+-
+HealthcareService

Declaration on Scientific Integrity

Erklärung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklärung zu Plagiat und Betrug

Author — Autor

Faris Ahmetasevic

Matriculation number — Matrikelnummer

2015-059-538

Title of work — Titel der Arbeit

lntegration of Fast Healthcare lnteroperability Resources (HL7 FHIR) into the openlMlS

open source Health Insurance Management System

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklärung

I hereby declare that this submission is my own work and that I have fully acknowledged

the assistance received in completing this work and that it contains no material that has

not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkläre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene

Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln

verfasst habe. Ich habe sämtliche verwendeten Quellen erwähnt und gemäss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 20.07.2020

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Swiss TPH
	1.2 openIMIS
	1.2.1 Objective
	1.2.2 How to achieve that?
	1.2.3 History
	1.2.4 System Description

	1.3 HL7 FHIR
	1.3.1 Resources
	1.3.1.1 Structure
	1.3.1.2 JSON Representation

	1.3.2 Codes
	1.3.3 Extensions

	1.4 Process of the project

	2 Preparation
	2.1 Requirements
	2.1.1 Operating System
	2.1.2 Microsoft SQL Server 2017

	2.2 Setting up openIMIS

	3 Development
	3.1 Architecture of the FHIR version 3 module
	3.1.1 Configurations
	3.1.2 paginations.py
	3.1.3 Models
	3.1.4 Converters
	3.1.5 Serializer
	3.1.6 permissions.py
	3.1.7 views.py
	3.1.8 urls.py

	3.2 Access to the FHIR API
	3.3 Integration of FHIR R4 into openIMIS
	3.4 Mapping
	3.4.1 Mapping process

	3.5 Data Migration Tool
	3.5.1 Database Management System
	3.5.2 JSON File Creator
	3.5.3 Creating Database Tables
	3.5.4 Merging Both Tools
	3.5.5 How to use it?

	3.6 Publishing the openIMIS FHIR R4 Module

	4 Conclusion
	4.1 Conclusion
	4.2 Future Work

	Bibliography
	A Appendix
	A.1 List of Abbreviations
	A.2 List of used Modules
	A.3 List of Mapped Resources
	A.4 End Product
	A.5 Mapping Tables
	A.5.1 Overview Table
	A.5.2 Claim Table
	A.5.3 ClaimResponse Table
	A.5.4 Coverage Table
	A.5.5 Patient Table
	A.5.6 Practitioner Table
	A.5.7 PractitionerRole Table
	A.5.8 Location Table
	A.5.9 CoverageEligibilityRequest Table
	A.5.10 CoverageEligibilityResponse Table
	A.5.11 Communicationrequest Table
	A.5.12 Condition Table
	A.5.13 Medication Table
	A.5.14 ActivityDefinition Table
	A.5.15 HealthcareService Table

	Declaration on Scientific Integrity

