NX : g
XK University Swiss TPH

/|\"/|\ Of Basel Swiss Tropical and Public Health Institute

Integration of Fast Healthcare
Interoperability Resources (HL7 FHIR)
into the openIMIS open source Health

Insurance Management System

Bachelor thesis

Natural Science Faculty of the University of Basel
Department of Mathematics and Computer Science
Databases and Information Systems Group
https://dbis.dmi.unibas.ch/

Examiner: Prof. Dr. Heiko Schuldt
Supervisor: MSc ETH Claudia Saupper (Swiss TPH)

Faris Ahmetasevic
faris.ahmetasevic@stud.unibas.ch
2015-059-538

20.07.2020

Acknowledgments

I would like to thank Prof. Dr Schuldt for giving me the opportunity to write my Bachelor
thesis on the openIMIS Initiative with the team of the Swiss TPH.

Further thanks are due to the entire staff of Swiss TPH, who welcomed me warmly and gave
me the feeling to be a full member of the team. Especially my supervisor Claudia Saupper
and Dragos Dobre, who were available at any time to support me, give feedback and answer
any questions without hesitation. Also, I want to thank Michel Borer, who as well wrote his
Bachelor thesis with the Swiss TPH, for his support and for being a good team member, as
well as Patrick Delcroix, who sacrificed two days to set up the modular version of openIMIS
together with us. The possibility to hold weekly meetings was very helpful and I appreciate
that Claudia and Dragos took the time to do so.

To close, I would like to thank my family and friends who supported me during the whole
four months and relieved me in other areas, so that I have the time to work on my Bachelor

thesis.

Abstract

The Swiss Tropical and Public Health Institute (Swiss TPH) is part of the openIMIS Ini-
tiative, which consists of organizations from all over the world that have joined forces to set
up a health insurance system. The goal of the open source Insurance Management Informa-
tion System (openIMIS) is to provide insurers with a low cost solution for managing health
insurance schemes and to give policyholders a way to administer their schemes with their

mobile phones.

However, the difficulty is that healthcare data must be accessible anytime and anywhere to
interact with other hospital management systems. Health Level 7 Fast Healthcare Interop-
erability Resources (HL7 FHIR) is used to ensure this exchange of data.

Since openIMIS uses FHIR version 3 interface and therefore many relevant attributes for
the administration of insurance are missing, the objective of this bachelor thesis is to extend
these attributes to FHIR version 4.

Table of Contents

Acknowledgments ii
Abstract iii
1 Introduction 1
1.1 Swiss TPH o o 1
1.2 openIMIS L 1
1.2.1 Objective o 2

1.2.2 How to achieve that? 2

1.2.3 History 2

1.2.4 System Description Lo 4

1.3 HL7FHIR e 5
1.3.1 Resources L)

1.3.1.1 Structure 5

1.3.1.2 JSON Representation 6

1.3.2 Codes o 8

1.3.3 Extensions e 8

1.4 Process of the project L 8

2 Preparation 10
2.1 Requirements L 10
2.1.1 Operating System L 10

2.1.2 Microsoft SQL Server 2017 10

2.2 SettingupopenIMIS oL 10

3 Development 13
3.1 Architecture of the FHIR version 3 module 13
3.1.1 Configurations e 14

3.1.2 paginations.pyo e 14

3.1.3 Models e 14

3.1.4 Converters 15

3.1.5 Serializer 16

3.1.6 permissions.py oo e 16

317 VIEWS.DY « . o o i e e e e e e e 16

Table of Contents

318 urlspy
3.2 Accesstothe FHIR API
3.3 Integration of FHIR R4 into openIMIS
3.4 Mapping e
3.4.1 Mapping Process« . .o i e i e e e e e e e
3.5 Data Migration Tool
3.5.1 Database Management System
3.5.2 JSON File Creator i
3.5.3 Creating Database Tables
3.5.4 Merging Both Tools
3.5.5 Howtouseit?
3.6 Publishing the openIMIS FHIR R4 Module

4 Conclusion

4.1 Conclusion
4.2 Future Work
Bibliography

Appendix A Appendix
A.1 List of Abbreviations
A.2 List of used Modules
A.3 List of Mapped Resources . . .
A4 End Product
A.5 Mapping Tables
A.5.1 Overview Table
A.5.2 Claim Table.
A.5.3 ClaimResponse Table .
A.5.4 Coverage Table
A.5.5 Patient Table
A.5.6 Practitioner Table . . .
A.5.7 PractitionerRole Table .
A.5.8 Location Table

A.5.9 CoverageEligibilityRequest Table
A.5.10 CoverageEligibilityResponse Table

A.5.11 Communicationrequest Table

A.5.12 Condition Table
A.5.13 Medication Table
A.5.14 ActivityDefinition Table
A.5.15 HealthcareService Table

Declaration on Scientific Integrity

16
17
17
17
21
22
22
23
25
27
27
28

30
30
30

32

35
35
36
36
36
37
37
38
39
40
41
42
42
43
43
44
44
45
45
46
46

47

Introduction

Like almost everything else in the world, healthcare financial systems are being digitised.
We, who live in digitally advanced countries, are not aware of the problems that a task
cannot be completed efficiently and reliable at the touch of a button. The openIMIS Initia-
tive has therefore set itself the task of developing a free alternative that allows low-income

countries to manage their health care finances quickly and efficiently.

1.1 Swiss TPH
Prior to discussing openIMIS, I would like to explain briefly what the Swiss TPH is.

The Swiss Tropical and Public Health Institute! (Swiss TPH) is one of the world’s most
recognized research institutes associated with the University of Basel and is active in the
field of global health.

From the identification of medical problems, to the development of the necessary measures,
the development of remedies as well as the monitoring and evaluation of treatment cam-

paigns, all activities are carried out by the more than 850 employees?.

' openIMIS
‘ 9]

1.2 openIMIS

openIMIS? is an open source system for managing health insurance schemes by offering an

easily understandable and user-friendly interface.

L Offical website of the Swiss TPH [10]
2 German Wikipedia page of the Swiss TPH [11]
3 Official openIMIS website [6]

Introduction 2

1.2.1 Objective

"We have around 400 million people without access to a complete set of essential health
services.” [47]

With this described problem the openIMIS Initiative has set itself the goal to achieve an
universal health coverage and an universal social protection by fulfilling the Sustainable De-
velopment Goals?® (SDGs). These are 17 global goals described by the General Assembly
of the United Nations, which are to be achieved by the year 2030. The openIMIS Initiative
focuses especially on SDG 1, which aims to end poverty in all its forms worldwide, and SDG
3, which is intended to ensure a healthy life for all people of all ages. The subcategories
SDG 1.3 and SDG 3.8 are thereby mainly addressed.

SDG 1.3 tackles to implement nationally appropriate social protection systems and measures
for all, including floors, and by 2030 achieve substantial coverage of the poor and the vul-
nerable. On the other hand, SDG 3.8 wants to achieve universal health coverage, including
financial risk protection, access to quality essential health-care services and access to safe,

effective, quality and affordable essential medicines and vaccines for all.

1.2.2 How to achieve that?

The openIMIS Initiative is a rapidly growing developer community, which ensures a contin-
uous improvement of the system as well as a possibility to adapt to the needs of different
countries by customizing specific scheme types. Because of that, openIMIS is designed to
be compatible with other IT-services to have a better data exchange. The last and most
important part is, that it is an open source system, so anyone can download it for free and
modify the code according to their preferences, which will directly lead to a feedback for the

community and again to the continuous improvement.

1.2.3 History

At the beginning, in 2012, the Insurance Management Information System (IMIS) was
launched with the help of the Swiss Development Cooperation® (SDC) and developed among
others by SwissTPH to be used in Tanzania. Due to the success of the openIMIS predeces-
sor, which was not an open source system at that time, other countries such as Cameroon

and Nepal were willing to use this system.

4 Wikipedia page of SDG [9]
5 Official list of SDG indicators [8]
6 Official website of the SDC [7]

Introduction 3

Aaster Chad - Modular

Nepal — New Version Mutuals - Architecture
Tanzania CHF - reform scheme TZ+CM+NP scale up Transformation
2012 1 7
° 2% 4 2g1 2318 2319
[J o [J [J
2013 2016 2017 2018
Cameroon penIMIS Democratic penIMIS
Mutuals - nitiative Republic of Communit
standardization SDC & GDC) Congo -

Mutuals —-
professionalize

Figure 1.1: From IMIS to openIMIS [48]

Eventually , in 2016, in cooperation with the German Development Cooperation” (GDC) and
under the coordination of the Gesellschaft fiir Internationale Zusammenarbeit® (GIZ), the
openIMIS initiative was founded, which licensed IMIS as an open source software, openIMIS
was born. Shortly after, further countries joined the community.

Due to the rapid growth and success of openIMIS, it was decided in 2019 to design the
architecture in a modular way, in order to be able to adapt the requirements of the schemes

of the different countries faster and more efficiently.

Cameroon

Tanzania

o 7
/

{

Figure 1.2: Current countries using openIMIS [49]

7 Official website of the BMZ [1]
8 Official website of the GIZ [5]

Introduction 4

1.2.4 System Description
The system works through a centralized server where people with administrator rights can

log in to get access to the various functions.

Administration

Products

v14.0
Health Facilities

Medical Services

Medical Items

User Profiles
Enrolment Officers
Claim Administrators
Payers

Locations

AN

© Swiss Agency for Development and Cooperation |
distributed under a royalty-free license O p e n >

by courtesy of the copyright owner
Figure 1.3: openIMIS web application

For example, to create an insurance scheme, follow the functions in Figure 1.3 step by step,
starting with the locations. However, a detailed tutorial® is given on the official YouTube

channel of the openIMIS Initiative, which explains the system in practice.

Once one has gone through these steps, the generated data must now be sent to other
systems, such as various health facilities. This data exchange is guaranteed by HL7 FHIR.

9 openIMIS Demo video on YouTube [46]

Introduction 5

AHL7ZFHIR

1.3 HL7 FHIR

Fast Healthcare Interoperability Resources'® (FHIR) is, as already mentioned, an open iter-
operability standard framework for the exchange of data between healthcare organizations
and their computer systems. It was published by Health Level Seven International (HLT),
a non-profit organization, in the year 2014'!. The current version FHIR R4 (Release #4)
was released on the 30th October of 2019.

1.3.1 Resources

FHIR uses different modular components, called "resources”, for health record classification
with which it transmits information in small fragments. To understand what resources are,
you can think of them as tables in SQL databases that are linked to other tables, that is,

other resources.

Currently there are 146 resources, divided into different categories, such as financial or

clinical, but which all have the same structure.

1.3.1.1 Structure
The resources are structured like folders, in which there are fields as well as composite fields.
Each field and composite field has a cardinality that describes how often they can occur.

There are four different cardinalities:

e (0..1) - a field can occur once or not at all
e (0..%) - a field is a list that can have several values or none at all
e (1..1) - a field must have a single value

e (1.*%) - afield is a list which must have one or more values

In addition, each field and composite field has a type, which is either a primitive or complex
type. The primitive types are those that have only one value and no additional elements as
children, for instance integers or strings. Complex types, on the other hand, have the same

folder-like structure as the resources and also include fields that consist only of primitive

types.

10 Official FHIR website [3]
1 Wikipedia page of FHIR [4]

Introduction

Name Flags Card. Type
-] Location DomainResource
- () identifier z 0.. Identifier
-] status 21 0. code
- () operationalStatus z 0.. Coding
-] name z 0.. string
-0 alias 0.. string
-1 description z 0.. string
-] mode z 0.. code
- () type z 0.. CodeableConcept
- () telecom 0.. ContactPoint
-()) address 0.. Address
- () physicalType z 0..1 CodeableConcept
position 0..1 BackboneElement
- | longitude 1..1 decimal
- | latitude 1..1 decimal
L. altitude 0..1 decimal
- [4 managingOrganization X 0..1 Reference(Organization)
- [4 partOf 0..1 Reference(Location)
hoursOfOperation 0..¥ BackboneElement
| daysOfWeek 0..¥ code
i allDay 0..1 boolean
i1 openingTime 0..1 time
i1 closingTime 0..1 time
--i__] availabilityExceptions 0..1 string
- [4 endpoint 0..* Reference(Endpoint)

Figure 1.4: Structure of the Location resource [2]

Each of these types has its own type, which is the Element and represents one of the two
highest instances. The Element is also the type of the BackboneElement, the types of the
composite fields. Besides the Element, the second structure, which has neither cardinality
nor type, is the Resource type. However, it should not be confused with the resources
mentioned above. This base Resource is the basis of all other resources and is the type of

the DomainResource.

1.3.1.2 JSON Representation
To read the resources in human understandable languages they can be accessed by request-
ing information from an FHIR server using a pull method. When data needs to be displayed,

a request for a specific resource is sent to the FHIR server. This resource can be returned

Introduction 7

in two different formats on the web browser, XML (Extensible Markup Language) or JSON
(JavaScript Object Notation), where openIMIS supports the JSON representation. De-
pending on the implementation you can perform different actions when connecting to the
RESTful API (Representational State Transfer Application Programming Interface) server.
Example given, you can filter resources by their unique identifier with the URL in this form

[baseURL]/[resource]/[id], which is a field in the resource structure.

This is an example of a JSON representation of the Location resource from Figure 1.4:

resourceType™”: "Location"
"id": "8ACFS1CF-EB6D-44DB-AED5-75412408E791"
"identifier"
type’
"coding"
code "UuID”
system": "https://hl7.org/fhir/valueset-identifier-type.html"
"use™: "usual"

"value": "BACF51CF-EB6D-44DB-AEDS5-75412483E791"

"une”
type
"coding
code LCc"
"system”: "https://hl7.org/fhir/valueset-identifier-type.html"”
Ise "usual”
alue": "R1
name "Ultha
physicalType
"coding'
code R
"system": "http://terminoclogy.hl7.org/CodeSystem/location-physical-type.html"”

Figure 1.5: Json representation of the Location resource from openIMIS

In this case we have a URL which looks like this: [baseURL]/Location/8ACF51CF-EB6D-
44DB-AED5-75412408E791

Introduction 3

1.3.2 Codes

If codes are given in a resource, the types Code, Coding or CodeableConcept are used.
These contain the code, which is represented by a pair of ”system” and ”code”. The ”code”
is the actual value of the code, where the "system” is a URL that defines the Code System
in which the code value is located. Within the Code System there is the Value Set. This
indicates which possible code values are contained in the Code System.

All codes from system http://terminology.hl7.org/CodeSystem/location-physical-type

Code Display Definition

si Site A collection of buildings or other locations such as a site or a campus.

bu | Building | Any Building or structure. This may contain rooms, corridors, wings, etc. It might not have walls, or a roof, but is considered a defined/allocated space.
wi Wing A Wing within a Building, this often contains levels, rooms and corridors.

wa Ward A Ward is a section of a medical facility that may contain rooms and other types of location.

Ivl Level A Level in a multi-level Building/Structure.

co Corridor Any corridor within a Building, that may connect rooms.

ro Room A space that is allocated as a room, it may have walls/roof etc., but does not require these.

bd Bed A space that is allocated for sleeping/laying on. This is not the physical bed/trolley that may be moved about, but the space it may occupy.

ve Vehicle A means of transportation.

ho | House A residential dwelling. Usually used to reference a location that a person/patient may reside.

ca Cabinet A container that can store goods, equipment, medications or other items.

rd Road A defined path to travel between 2 points that has a known name.
area | Area A defined physical boundary of something, such as a flood risk zone, region, postcode
jdn Jurisdiction A wide scope that covers a conceptual domain, such as a Nation (Country wide community or Federal Government - e.g. Ministry of Health), Province or State

(community or Government), Business (throughout the enterprise), Nation with a business scope of an agency (e.g. CDC, FDA etc.) or a Business segment (UK
Pharmacy), not just an physical boundary

Figure 1.6: Value Set Location Physical Type [14]

This value set is shown in Figure 1.5 under physicalType.

1.3.3 Extensions

In case you need a field which does not originally appear in the resource, you can use

extensions.

Structure

Name Flags Card. Type
Extension I@ Element

Figure 1.7: Structure of an Extension [13]

Extensions form a separate composite field which can contain several complex or primitive
types. Each of these types is defined by an URL and a value. The name of the type is

appended to the value, so you can see which type was used.

1.4 Process of the project
Now that we have all the information about the different components of this work, we come
to the actual procedure of my project.

This project has four steps, which I had to achieve. These are:

Introduction 9

1. Become familiar with the existing openIMIS implementation and HL7 FHIR (versions
3 and 4).

2. Provide a mapping from relevant fields of the most popular and relevant hospital
management systems and openIMIS, with focus on the fields and attributes that are

so far not yet supported.

3. Integrate support for HL7 FHIR version 4 into openIMIS (back-end implementation
in python).

4. Develop a tool for the transfer of data from the openIMIS database to a FHIR database
through the new developed FHIR version 4.

The first point can be seen as an introduction to the project, where I should first of all
familiarize myself with the code for the integration of FHIR version 3 and get a feeling for
the differences between the two FHIR versions. This point also includes the installation of
all required programs.

The next two points can be taken together, since mapping resources requires FHIR R4 to
be already integrated.

Last but not least, a program should be written which transfers the data from the openIMIS

database to a new database which has the structure of the FHIR resources.

Preparation

Before you can start with the actual work, the mapping of the resources and the transfer
of the database, you have to fulfill several requirements to install all needed programs and
start openIMIS.

2.1 Requirements
2.1.1 Operating System

Because the current implementation of openIMIS uses the Microsoft SQL Server'?, the
system can currently only run on Windows devices. Of course, a possibility is to install the
server on Mac OS or Linux with the Docker'? program, but then important applications like
the SQL Server Management Studio or the SQL Server Configuration Manager are missing.
It is also recommended to use an administrator account, because for many files the user

needs access rights.

2.1.2 Microsoft SQL Server 2017

To be on the safe side it is recommended to download the 2017 version of the Microsoft SQL
Server, because openIMIS was developed and tested especially with this version. The reason
for this is explained in the next section. Since recently the developer version of Microsoft
SQL Server 2017 can be downloaded directly from the openIMIS wiki page!?.

2.2 Setting up openIMIS
The installation of the two openIMIS versions, the legacy and the modular version, was
probably the most tedious work of the whole project, because many problems occurred in

the process which took a lot of time to fix.

12 Official website of the Microsoft SQL Server [15]
13 Official website of Docker [12]
1 openIMIS Database Installation wiki page [16]

Preparation 11

For the installation I made use of the openIMIS wiki!® page, which contains a guide that
goes through every step.
Since I generally use Mac OS and I am most familiar with this operating system, I wanted

to download openIMIS on an Apple computer.

I started with the modular version. The first step was to download all the required repos-
itories, which can be found on the openIMIS GitHub!'® site and directly linked on the
installation guide for the modular version on the openIMIS wiki page'”, as well as installing
the openIMIS demo database which is needed to have any entries in the webapp.
Downloading the Microsoft SQL Server was not a challenge at the beginning because I
created a container with Docker and started the server on the terminal with a virtual envi-
ronment. When the gateway, which connects the frontend with the backend server, caused
problems by not being able to create a running container, I finally switched to a Windows
device, where I hoped to get the setup done quickly.

In one of our weekly meetings it turned out that the modular version is dependent on the
legacy version and should therefore be installed first. So I installed the legacy version first.
The installation and configuration of the SQL server, the openIMIS demo database'®, and
the IIS (Microsoft Internet Information Services) was very quick and easy. When I finally
changed the permissions in the event logs and start the web application, I could not connect
to the server. I found an error message on my web page that denied me access because
I allegedly had no rights, although I followed exactly the points from the manual. After
some searching I found out that in the Registry Editor not only the EventLog folder and
the Security key it contains must have administrator rights, but also the State key. After

this change the legacy version worked fine.

Now it was the turn of the modular version, which only required the download of six mod-
ules, an adaptation of the .env file by system variables that formed a link to the database
and a few terminal commands.

But this did not work as easily as expected, because the modular version has to be installed
individually to each user. Fortunately Patrick Delcroix found time to work with me on this
problem. It took us half an afternoon to fix the error messages Patrick Delcroix had not

seen before and to establish a connection.

The disillusionment followed one day later, when all of a sudden error messages appeared
again and nothing worked anymore. It appeared that the database drivers were designed
for the SQL Server 2017 version and I was running the latest Microsoft SQL Server 2019.

Once the SQL Server is on the device, it is very difficult to uninstall. It took me a whole

week to get the 2017 version up and running, because the protocols for the server could not

15 Installation Manuals for the modular and legacy version of openIMIS [17]
16 Official openIMIS GitHub page [18]

17 Installation guide for the modular version of openIMIS [19)

18 Repository for the openIMIS databases [45]

Preparation 12

be started. I then decided to reset my whole computer, otherwise it would not have worked.

After a successful reinstallation of the server, but now the SQL Server 2017 version, I went
through the whole procedure from the beginning and came back to the point, that the in-
stallation of the modular version causes problems.

Since Michel Borer, as before with the legacy version, had to struggle with the same prob-
lems, Dragos Dobre and Patrick Delcroix decided to install the modular version together
with us, so that we could finally start with the actual work. For Michel the installation
worked, but for me the time was not enough, because I had to deal with error messages once
again.

19 which directly downloads

In the meantime Dragos Dobre developed a development too
and installs the necessary modules from PyPI?° (Python Package Index) I need for my work,
like the openIMIS backend and the FHIR modules. After some initial problems we sat down
together and finally managed to get the modular version running. We initialized the system
variables as local variables on Windows, but we did not consider the port, because it was

probably in conflict with another port.

After a long and tedious setup, both versions were running perfectly, so the next and main

part, the programming, could begin.

19 GitHub link to the development tool repository [20]
20 Official webiste of PyPI [33]

Development

The development is divided into three parts, the first part being the integration of FHIR
R4 into the openIMIS system. This is the logical step, as the mapping of resources re-
quires a base to start with. Further, I will explain the mapping process and finally the

implementation of the migration tool.

3.1 Architecture of the FHIR version 3 module
To fully understand how the FHIR API module works, it is important to first understand

how it is constructed.

The module api_fhir?' contains eight directories and seven files, which are all connected to

each other, and whereby I explain the most important ones in a more precise way.

. configurations
. converters
. exceptions
B migrations
B models

l serializers
l tests

l utils

B _init_

9 admin

® apps

B paginations
B9 permissions
B urls

B views

Figure 3.1: Structure of the api_fhir module

21 Link to the openimis-be-api_fhir_py repository [22]

Development 14

3.1.1 Configurations

In the Configurations folder?? there are various configuration files, which are used to im-
plement the required codes for the individual resources. These codes either originate from
the value sets of FHIR or are self-generated codes that are used specifically for openIMIS.
These configuration sets are passed on in the apps.py?® script as a default list to the mod-

uleConfiguration.py?* script, which then creates the configurations.

3.1.2 paginations.py

From the previously mentioned configurations the generalConfiguration.py?® script, which
contains default values for the API’s, is passed to the paginations.py?® script. This script
then creates the bundle resource in which it inserts the data of the mapped resources.

It also describes the layout of the webpage with the values it got from the generalCon-
figuration.py script. For example how many entries there are on a page and how to edit

them.

3.1.3 Models

The files in this folder are the interface between the various FHIR resources and the mapping

of those just mentioned. In each of these files a one-to-one representation of the folder-like

structure of the resources is created.

Figure 3.2: Implemented structure of the Location resource

22 Link to the configurations directory in GitHub [24]

23 Link to the apps.py script in GitHub [23]

24 Link to the moduleConfiguration.py script in GitHub [28]
25 Link to the generalConfiguration.py script in GitHub [26]
26 Link to the paginations.py script in GitHub [29]

Development 15

Name Flags Card. Type
Location
) identifier z 0..* Identifier
status ?1Z 0.1 code
) operationalStatus z 0..1 Coding
name z 0..1 string
alias 0..* string
description z 0..1 string
mode 21X 0.1 code
J type z 0..1 CodeableConcept
-} telecom 0..¥ ContactPoint
- () address 0..1
) physicalType z 0..1
position

longitude
latitude
altitude

- [4 managingOrganization X

&

partOf Reference(Location

o o o o = = 0o
R S U S SN

- [4 endpoint Reference(Endpoint)

Figure 3.3: FHIR structure of the Location resource [21]

Each field is defined as a property that contains the name of the field, the types and, de-
pending on which one is defined, the cardinality. The cardinality (0..1) is ignored, where

cardinality (0..*) is set as count_max="*" cardinality (1..1) as required=True and the

cardinality (1..*%) as count_max="*", required=True together.

The BackboneElements are declared in their own field in the resource, where this field points
to the generated BackboneElement, which was created as a separate class. Thus, for every
resource, every element and every complex type that is required, a representation in the

code is mandatory.

3.1.4 Converters

The converters are the main files when it comes to mapping the resources. Thereby each
resource has its own converter which maps the data from the openIMIS database to the
corresponding field of the FHIR resource and vice versa.

The database data is defined in separate modules, such as the openimis-be-location_py3”
module, which itself has a model.py file where the columns of the database are initialized
in tables. These tables can then be imported into the converter and the values in them
accessed. But it is essential that the types of the database columns correspond to the types
of the FHIR field.

I will go into more detail about the converters in the mapping section.

27 Link to the GitHub repository of openimis-be-location_py [27]

Development 16

3.1.5 Serializer
The FHIR, as well as the openIMIS conversions that were previously created, are then used
in the serializer to map the fields and their data to the API. Here, each FHIR field with

values is then added to an instance list which is returned to the views.py script.

3.1.6 permissions.py
In this module there are permissions for five HI'TP methods to interact with the FHIR
API. These are the GET, POST, PUT, PATCH and DELETE methods, although not all

resources have permission to use each method.

e GET: A resource is requested from the server

POST: Resources or data are sent to the server

e PUT: A resource is uploaded to the server using a target address
e PATCH: A set of instructions on how to modify resources

DELETE: A resource is deleted from the server

In the permissions.py?® script a set of permissions is created for each resource that will be
displayed in the FHIR API. Which method is allowed is defined in the configuration in the
module of the respective resource, which then imports the permission.py script and returns

it to the view.py script, too.

3.1.7 views.py

The views.py?? script receives the serializer and permissions of all resources and creates a
view set for each of them. A look up field is defined, which usually contains the UUID, a
unique identification number, with which the individual resources, respectively the rows of
the database, can be filtered.

3.1.8 urls.py

With the urls.py® script a framework router is used to create the URL’s, which are stored
as a register. In this register are the names of the resources on the URL link, the view sets
imported by the views.py script, and a basename. This basename is used to ensure that the

URL is unique and does not lead to another resource that might have the same name.

28 Link to the permissions.py script in GitHub [30]
29 Link to the views.py script in GitHub [32]
30 Link to the urls.py script in GitHub [31]

Development 17

3.2 Access to the FHIR API

To get access to the FHIR API a superuser for the backend server had to be created first. For
this, change to the openIMIS folder of the backend module, where the manage.py>! script is
located and activate the virtual environment. If a user starts this script with the command
python manage.py createsuperuser , he will be asked for a username and a password, which
he creates himself. To run the server the command python manage.py runserver has to be
launched.

Once the login credentials have been created and the server is running, the user has to log
in at http://localhost:8000/admin to get the authorization to view the data in the API.
When everything is done, the FHIR API can be accessed via http://localhost:8000/api_fhir.

3.3 Integration of FHIR R4 into openIMIS

With the intention to create the FHIR R4 API and build on it, I duplicated the module
api_thir in the same directory and just renamed it to api_thir r4. In this new module I
changed every name that had something to do with version 3 as well as the imports from
api_fhir to the new module.

At the beginning, I only wanted to use the link http://localhost:8000/api_thir r4/ to get to
a new page which belongs to the FHIR R4 API and which contains api_fhir_r4 in the base
URL’s of the resources. I created the page, but every link of the API redirected me back to
version 3.

With a bit of trial and error I finally found out that the basename from the urls.py script
was the same as the one of the original module. With the renaming of the basenames I had
a working API for version 4, which I could update step by step with the mapping of the

new resources.

3.4 Mapping

Now that I have a base to work on, we come to the major part, the mapping.

In the beginning the goal was to adapt the resources already mapped from version 3 to the
new version. Besides, I should document my progress on the openIMIS wiki page®2. I took
over the wiki documentation from FHIR v3 and updated it according to my tasks. On the
wiki page is a table for each resource, which shows which FHIR field has to be connected to
which openIMIS database field. These tables were created by Dragos Dobre so that I and
other people know how the resources were mapped. They also served me as a guide and
checklist.

The resources that had to be mapped at that time were Claim, ClaimResponse, Coverage,

Patient, Practitioner, PractitionerRole, Location, CoverageEligibilityRequest, CoverageEli-

31 Path to the manage.py script: openimis-be_py/openIMIS/manage.py
32 FHIR R4 mapping wiki page [25]

Development 18

gibilityResponse and CommunicationRequest.

But before I could start with the actual mapping, the first logical step was to check the
resources from the models directory and if necessary remove fields that are not needed or
add fields that do not exist yet. This was not very demanding work, as it was actually
a straightforward approach. However, it helped me to better understand the structure of
the resources, especially the composition of the different elements and complex types. This
didn’t take very long and once that was done, I was able to deal with the converters, since

they are the foundation of the mapping.

In principle, each of these converters has the same design.

The structure is as follows:

class ExampleConverter (BaseFHIRConverter, ReferenceConverterMixin) :

@classmethod

def to_fhir_obj(cls, imis_example) :
fhir example = ExampleResource ()
cls.build_fhir pk(fhir_example, imis_example.uuid)
cls.buld_fhir test_field(fhir example, imis_example)

return fhir example

@classmethod
def to_imis_obj(cls, fhir_ example, audit_user_id):
errors = []
imis_example = ExampleTable ()
cls.build_imis_test_column (imis_example, fhir example, errors)
cls.check_errors (errors)

return imis_example

@classmethod
def get_reference_obj_id(cls, imis_example) :

return imis_example.uuid

@classmethod
def get_fhir_ resource_type (cls):

return ExampleResource

@classmethod

def get_imis_obj_by_ fhir_ reference(cls, reference, errors=None) :
example_uuid = cls.get_resource_id_from_ reference (reference)
return DbManagerUtils.get_object_or_none (ExampleTable,

uuid=example_uuid)

Development 19

The five methods shown in the example code are used in practically every converter. The
first two, the to_fhir_obj() and the to_imis_obj(), methods are probably the most important.
These are initialized by the BaseFHIRConverter and are used to collect fields of the resource
or the columns of the database table and pass them on as a whole resource and whole table.
In addition, the to_fhir_obj() method always contains the function build_fhir_pk(), which is
also initialized by the BaseFHIRConverter and defines which column of the database table
is the primary key.

As mentioned above, depending on the number of fields required in a resource, you can have
multiple methods that map the values of a database table to a resource field. An example
of a function found in the to_fhir_obj() method looks like this:

@classmethod
def build_ fhir test_field(cls, fhir example, imis_example) :
if imis_example.patient_name is not None:

fhir example.name = imis_example.patient_name

Here the names of patients found in the ExampleTable are mapped to the name field of the
ExampleResource. If the API allows a POST method for this resource, you must also map

it the other way around. The same resource field and the same table column are being used.

@classmethod
def build_imis_test_column(cls, imis_example, fhir_example, errors):
name = fhir_ example.name
if not cls.valid_condition (name is None,
gettext ('Missing example "name’ attribute'), errors):

imis_example.patient_name = name

This is the way to map fields that only take the value of the database tables directly. At

this point I would like to mention three special cases.

CodeableConcept
Of course, it is possible to map CodeableConcepts like all other fields, but there is a special

function which automatically creates the structure of the CodeableConcepts.

@classmethod
def build_fhir example_codeable_concept (cls, fhir_example, imis_example) :

fhir_example.code = cls.build_codeable_concept (code, system, text)

This function takes the three values ”code”, "system” and "text”, where the code is the
actual code from the database table. The system is a URL, which links the value set of the

code. The text is in most cases either a description of the code or its full name.

Development 20

Reference
Since we already know what a reference is, we also need to know how it is implemented. As

with the CodeableConcepts there is a separate function for this.

@classmethod
def build_fhir example_reference (cls, fhir example, imis_example) :
fhir_example.location = LocationConverter.

build_fhir resource_reference (imis_example.location)

We know that almost every converter has the get_reference_obj_id() method which defines
the key for the references. If we now create a reference to the location, as in the example, we
need to import the LocationConverter and apply the build_fhir_resource_reference() function
to it. By doing so, we get back a reference value, the value which the LocationConverter
defines in its get_reference_obj_id() method.

The ExampleTable also needs a link to the LocationTable. In this case the ExampleTable
has a foreign key which points to the LocationTable ID.

Extension

The extension is a list that contains fields that do not occur in the resource. First, an
extension field is initialized with the desired type, as value plus the type name, whereby the
type is also initialized if you want to specify the exact values. In addition, each extension
has a URL, which can be a link to a page or just the name of it. Then all extensions created

are appended to the FHIR resource.

@classmethod

def build_fhir example_extension(cls, fhir example, imis_example) :

extension = Extension ()
extension.url = "valueCodeableConcept"
extension.valueCodeableConcept = cls.

build_codeable_concept (code, system, text)

fhir_ example.extension.append(extension)

In this example I combine the extension with a CodeableConcept. Here the type is not

initialized, because we have a function which directly creates a CodeableConcept.

The next three methods are all initialized by the ReferenceConverterMixin class. The
get_reference_obj_id() method determines which value is used in case of a reference to this
class. References have this form in openIMIS: Resource Name/Reference Value .

This means that if another resource needs the ExampleResource as a reference, the resource
name is then ExampleResource and the reference value in this case is the UUID of the Ex-
ampleTable.

get_fhir_resource_type() merely indicates the type of this resource.

The last method, get_imis_obj_by_fhir_reference(), returns the database object that has the

searched reference value of the resource if there exists one.

Development 21

3.4.1 Mapping process

I started mapping the CoverageEligibilityRequest because Dragos Dobre warned me that
this resource was previously only called EligibilityRequest and this name change had a big
impact on the whole mapping of it. As it turned out this was not the best idea, because
I still did not understand the code exactly and because this resource did not allow a GET
method, which made it difficult to test and control the correctness, I should have started
with a resource that is easier to map. Somehow, after some time, I managed to map it

successfully, which in retrospect gave me a better understanding of the implementation.

While I was still very early in the mapping process, the first adjustments of the fields in
the resources and three new resources to be mapped had already been made. So I had
to map the Condition, Medication and ActivityDefinition resources, because they are very
important for the Claim resource.

In the Condition resource the diagnoses of the patients were stored, in Medication the items
like tablets or pills, which the patients have been prescribed, and in ActivityDefinition the
services, i.e. surgery or other measures. These fields are specified for each patient in the
claim resource as a list, which also has the reference to the specific resources.

Because HISP India®? (Society for Health Information Systems Programmes) needed these
resources for its work, the focus was now on these three resources. At the same time it
was decided that I did not need to map the Coverage and the associated Contract resource
because it was taken over by another organization.

With the Medication Resource finally came the breakthrough, with which I fully understood
the principle of mapping.

With the completion of these three resources I had to create the view sets and permissions,
so that you can reach them in the API with a URL. To do this, I first had to create the cre-
ate() and update() methods in the serializer. I built them by copying a serializer script of an
already mapped resource and modifying it with the respective values of the new resources.
As with the serializers, I copied the permissions of other resources to create new ones. But to
create these permissions, I had to import them from the openimis-be-medical_py>* module,
as they were defined there. Because they were not fully implemented, I could only specify
the GET method.

Next I had to implement the view sets of the resources. At the example of the Medication

Resource you can see how such a class looks like.

class MedicationViewSet (BaseFHIRView, mixins.RetrieveModelMixin,
mixins.ListModelMixin, GenericViewSet) :
lookup_field = 'uuid'
serializer_class = MedicationSerializer

permission_classes = (FHIRApiMedicationPermissions,)

33 Official website of HISP India [36]
34 Link to the GitHub repository of openimis-be-medical_py (39]

Development 22

def get_queryset (self):

return Item.get_qgueryset (None, self.request.user)

The get_queryset() method is created in the models script of the corresponding modules.
This query set is then returned with the data requested by the database user.

The structure of these classes is the same for each resource. Usually the UUID of a table is
used as look up field to filter the resources, but this does not exist for the condition resource.

In this case the condition ID is used.

The last resource to be recreated was the HealthcareServices resource. This takes the values
of the HealthFacility table from the database. Because the HealthFacility table and the
Location table were originally mapped together in the Location resource, both resources
had to be rewritten with the individual tables. But since I already mapped a large number

of fields, this was not a big work and therefore did not take much time.

Before I could start implementing the data migration tool, I had to map more necessary
fields, because it was thought that they would not be needed, as well as test and fix bugs

on the whole mapping.

3.5 Data Migration Tool
The objective of the migration tool is to transfer the data from the API into a new database,
which, unlike the openIMIS database, has the structure of the FHIR resources.

3.5.1 Database Management System

Since the openIMIS initiative wants to move away from the expensive Microsoft SQL Server
and Michel Borer in his Bachelor thesis ”Database Migration in the openIMIS open source
Health Insurance Management System”3® had the task to migrate the openIMIS database
to a PostreSQL3® database, I logically also used PostgreSQL for my migration tool.

So I downloaded PostgreSQL from the official website. The installation included the pgAd-
min software, which provides a graphical user interface to create and manage PostgreSQL

databases. In this one I created a new user, so I don’t have to deal with the default settings.

The next step was then to figure out how to convert the resource data from the API so that
I could use it in my code.

Dragos Dobre suggested fhirbase®”, an open source software based on PostgreSQL. After
some experimentation, it turned out that fhirbase only supports FHIR version 3 and this
tool did not meet the requirements we had for the database anyway, although it creates a
database directly with the FHIR resources.

35 openIMIS wiki page for Michel Borer’s Bachelor thesis [40]
36 Officical PostgreSQL website [43]
37 Official fhirbase website [34]

Development 23

After searching in futile for alternatives, we decided not to use an existing FHIR database
but to develop a database structure based on the mapping.

38 in one of our

For this reason, Claudia Saupper suggested a package called fhir.resources
weekly meetings. This package allows you to create resource objects from JSON represen-
tations and also to save them in a JSON format.

To work with this package one must first install it with pip install fhir.resources . Firstly,
I wanted to create a simple resource object and print the values in it. So, I wrote a test
JSON file with a resource in it and loaded the data into the resource object. This worked
very well, thus I wanted to create a database with a table in Python. Now in order to
work with PostgreSQL in Python you have to import the ”psycopg2” library and establish
a connection with the created user to PostgreSQL.

The issue then was that when a database was created in a script, you could not connect to
it in the same script. Because I couldn’t find a solution to this problem and to save time,
I manually created a database on pgAdmin. In the meantime Dragos Dobre asked me if it
would be possible for me to implement a tool that stores the API data directly as a JSON
file.

3.5.2 JSON File Creator
The tool to create JSON files needs a connection to the API to collect data from it with a
GET method. To do this you import the library requests.

req = requests.get (url, auth=HTTPBasicAuth (user, password))

With the requests library you can then use the get() function, which is passed a URL
and authentication credentials. In our case the URL is the one that leads to a resource
in the API, for example http://localhost:8000:api_thir_r4/Location/ and the username and
password are the ones you need to log in to http://localhost:8000/admin/. Then you can

use the imported json library to assign the request as text to a variable.

data = json.loads (reqg.text)

But because every API consists of several pages you have to know how much data has to
be inserted into the JSON files. For this I wrote a function which returns the maximum

number of page numbers.

38 fhir.resources package on PyPI [35]

Development 24

It works like this:

size = 1
req = requests.get (url, auth=HTTPBasicAuth (user, password))

next_site_url = url + pageOffset
while reqg.status_code != 404:

size += 1
url = next_site_url + str(size)
req = requests.get (url, auth=HTTPBasicAuth (user, password))

continue

return size - 1

openIMIS has a variable in the API URL which indicates on which page you are currently
located and is described as page-offset= with a number at the end. I first create a URL
for the next pages using the URL that the function was passed to, then add the page offset.
Then I run a while loop until it gets beyond the last page and receives an HTTP error code
404. Since in the loop a counter was added by 1 after each pass, we can return it subtracted

by one, because we do not care on which page we got the error, but how many pages worked.

In the main function I run a loop which runs until the maximum number of pages is reached.
Within this loop I make a GET request for each page in the API and store the data in a
new variable. Because each page contains the data in a Bundle resource, we have to ignore
it from the second page on, because we only want one Bundle with all entries of a resource.
Since we use the data in JSON format, we can simply apply the get() function to our data.
In this get() function we then determine what we want to have from the Bundle. With
‘entry’ in the function, we can filter everything in the entry list, which represents the list of

the Bundle resource.

while page < last_page:
page += 1
url = next_site_url + str (page)
req = requests.get (url, auth=HTTPBasicAuth (user, password))
resources_next_page = json.loads (reqg.text)

resources_next_page = resources_next_page.get ('entry')

for 1 in range(len (resources_next_page)) :

data['entry'].insert (EOF, resources_next_page[i])

In a for loop each index in the entry list is inserted at the end of the whole file until the
data is returned.

The last step is then to create the data with a file writer and save them in a folder.

Development 25

3.5.3 Creating Database Tables

As already explained, I could not create a database with python, so I went directly to the
tables. With the also mentioned psycopg2 library you connect to the database by passing
the database name, username, password, host address and port as parameters. To execute

queries, the connection creates a cursor.

connection = psycopg2.connect (dbname, user, password, host, port)

cursor = connection.cursor ()

I then had to write a separate function for each resource and the subfolders in the mapped
resources, because each field of a resource has to be defined individually to map it to the
table. So you create a query for each resource by creating the table and initializing the

columns, which is done with the cursor.

query = ("""DROP TABLE IF EXISTS Location;
CREATE TABLE Location (
location_id INT PRIMARY KEY NOT NULL,
identifier VARCHAR (255) NOT NULL,
name VARCHAR(100),
physical_ type VARCHAR(3),
part_of VARCHAR (255));""")

cursor.execute (query)

connection.commit ()

The connection commits the changes to the database resulting in an empty table. To insert
the values into the table, I read the JSON files I created with the first tool and put them

into the Bundle of the imported fhir.resource package.

from fhir.resources.bundle import Bundle

bundle = Bundle (data)

In bundle is now the whole structure of the resources within the entry list. Over the length
of this list the values of a resource can be looped to insert them into a row of the table.
This is done with a for loop in which the actual resource is defined. Here it is the location
resource.

The next step is to define the values to be inserted into the table. This is described with
an SQL query, where I then have to filter the values from the resource and connect them to

these values.

Development 26

for i in range(len (bundle.entry)) :

location = bundle.entry[i].resource

insert = ("""INSERT INTO Location (location_id, identifier,
name, physical_type, part_of)

VALUES (%s,%s,%s,%s,%s)""")

Up to this point, the procedure in each function is exactly the same, except that you have
different fields in the resource. From here on, you have to filter and initialize each field
separately, paying attention to which fields are mandatory for the resource and which may

or may not occur.

gender = patient.gender

address = None

if patient.address is not None:
if addr := [x for x in patient.address if x.type == "physical"]:

address = addr[0].text

In this example from the Patient Resource you can see that the gender field has a cardinality
of (1..1) and must appear in the resource. Therefore, you can initialize it directly.

On the other hand, we have the address, which does not necessarily occur. First you have
to check if this value occurs, if not you give the table a null value. If it occurs then we
have to filter it, because most of the fields are in a list. Here fields like the "text” in the
CodeableConcepts help us, because they describe the code but are not inserted into the
tables.

Once this is done, you can insert the values into the table with the cursor and commit the

changes with the connection.

data_to_insert = (gender, address)
cursor.execute (insert, data_to_insert)

connection.commit ()

But what has to be considered is that if you add or remove fields to the API in the mapping
step, you will have to integrate these fields into the database manually by going through these
steps again. This happened to me a lot during the implementation of this tool, because some
resources had mandatory fields that were not needed by openIMIS, but the fhir.resources
package gives an error message because these fields are missing. That means I still had to
deal with the mapping during the implementation of the migration tool, which was not a
bad thing. With the fhir.resources package I was able to find and fix many small bugs in
the mapping.

Development 27

3.5.4 Merging Both Tools

Because I created the database tables with the locally generated JSON files, Dragos Dobre
wanted me to read the data the same way I did in the JSON Creator Tool, via the API,
and to put both tools into one script. First I cleaned up the code of the JSON Creator Tool
and made it more compact by creating all files with one function. I did this by giving the
function a global list of resource names and attaching them to the URL. I also added the
functionality to automatically delete the files and the folder they are in, if it exists. That
means you can create the current state of the data automatically without having to delete

the data manually.

To get the data for creating the tables through the API, I used the same function I used to
create the JSON.

Last but not least, I created two classes for the respective tools. In the first class there is
a function, which creates all tables in order. Beside the function I created a directory with
which I can choose in the main method which table I want to create individually. In the
second class there are two functions which either creates the folder and writes the files or

deletes them first and then rewrites them updated again.

And finally, to have a tool that is easy to use, I built a small dialog on the console that tells

the user what to do to get the desired end product.

3.5.5 How to use it?

The Data Migration Tool can be downloaded directly from the openimis-fhir-data-migration_py>*
repository in GitHub. You can also find a detailed documentation on the openIMIS wiki*®
page of the tool. Since this tool depends on the FHIR R4 API, the backend server must be

started before running.

At the beginning of the code you can adjust the global variables according to your settings,
and specify the directory where you want to store the JSON files.

To run the tool on the console of e.g. PyCharm*', you have to go to the execution settings
there. This can be reached by clicking on ”Run” in the upper menu and selecting the option
"Edit Configurations...” there. In the window which is now open, enable the ”Emulate
terminal in output console” checkbox. The reason for this is that the imported library
getpass will not work on the console until you set this function. If you use the terminal it

does not need any settings.

39 openimis-fhir-data-migration_py repository link [41]
40 openIMIS wiki page for the Data Migration Tool [42]
41 PyCharm page of the official JetBrains website [37]

Development 28

(a) Start Dialogue (b) After pressing 1

Figure 3.4: Dialogue on the Console

After starting the program the dialog from Figure 3.4 (a) appears, where you can decide
what you want to do. If you enter 1, more instructions will appear (Figure 3.4 (b)). Here
you first have to connect to the database. If you have a local database you can leave the
host and port empty. Once connected you can decide if you want to create all tables at once
or just one at a time. If you do not want to create all tables, a list of possible tables will be
displayed.

If you choose to create the JSON files, they will be created immediately after you press 2.
When a task is done, you will be taken back to the start dialog where you can do more

things or end the program by pressing 3.

3.6 Publishing the openIMIS FHIR R4 Module

To finish my project, my last task was releasing my self-created module on PyPI.

For this, I first needed my own GitHub repository. I cloned the openimis-be-api_fhir_r4_py*2
repository created by Dragos Dobre in the directory where all other modules were located
and moved the FHIR R4 module from the previous version’s folder. Because this module is
now no longer recognized, I had to install it, as described in the README.md file in the
openimis-be_py repository, by the command pip install -e ../openimis-be-api_thir r4 py/ .
The next step was to push a tag with the version number to GitHub. To complete the

release you needed an account on PyPI and two packages to install.

42 openimis-be-api_fhir_r4_py repository link [38]

Development 29

The first one is the wheel package which creates the module. Running python setup.py bdist_wheel
will run the setup.py script that describes the module.

The second package is twine. As before you install it with pip install twine . To upload

the module to the PyPI site, run twine upload -r pypi dist/openimis_be_mymodule-1.2.3* .

Here you name your module and add the version number described in the tag.

043

Now you can easily install the openimis-be-api-thir-r4 1.0. package via pip.

43 Self created openIMIS FHIR R4 package [44]

Conclusion

4.1 Conclusion

The aim of this thesis was to develop an integration of the current FHIR R4 version to the
openIMIS system for the Swiss Tropical and Public Health Institute (Swiss TPH), which
can run alongside version 3. The objective was to map the most important fields of relevant
hospital management systems and access the data through an API. In addition to this, a
migration tool was developed, which besides creating database tables with the structure of

the mapped resources, also writes the data of these resources as JSON files.

With the completion of the project, there are two products that can be used by the entire
openIMIS developers community. Firstly, openIMIS is running with the latest version of the
FHIR R4 framework and secondly, the data from this newly mapped version can be clearly
displayed in a database or as JSON files using the Data Migration Tool.

This Bachelor thesis can be seen as a guideline for future mapping tasks and developments.
It shows step by step the structure of the whole process.

Starting with the installation of the openIMIS system, it was also a test to see what dif-
ficulties inexperienced users have to start the system. With the discovered shortcomings
the installation guide was immediately updated so that there will be no problems for future
installations.

In addition, this thesis provides a detailed description of the FHIR structure, as well as the
architecture of the openimis-be-api_fhir_r4 module, to make it easier for developers to get

started, as the code itself is not very well documented.

Overall, the project was completed successfully and satisfactorily, whereby it was an honour
for me to work together with the Swiss TPH and the openIMIS Initiative.

4.2 Future Work

The first version of the module contains the most relevant resources for the moment, but
due to the large number of resources and fields there are still many that can be mapped.

Thereby the mapping of the fields in the code can be improved qualitatively with a compact

Conclusion 31

code style. I have agreed to be part of the openIMIS developers community and to continue

working on the FHIR R4 integration, so that this points can be tackled.

If new fields are added to the mapping, they must also be added in the Data Migration Tool.
A solution can be found to integrate the fields into the database tables more automatically,
as well as finding a way to convert resources from the API directly into tables.

In addition, a way can be found to optimize the writing of the JSON files. Since there are
over 35’000 claim entries in the real world usage, the memory is very strained, which means

that writing takes a long time.

Bibliography

Official website of the bmz. hittps://www.bmz.de/en/index.html, 12.07.2020.
Structure of the location resource. http://hl7.orq/fhir/location.html, 12.07.2020.
Official fhir website. http://hl7.orq/fhir/, 12.07.2020.

Wikipedia page of thir. hitps://en.wikipedia.org/wiki/Fast_Healthcare_Interoperability_Resources,
12.07.2020.

Official website of the giz. https://www.giz.de/en/html/index.html, 12.07.2020.
Official openimis website. https://www.openimis.org/, 12.07.2020.

Official website of the sdc. https://www.eda.admin.ch/deza/en/home/sdc.html,
12.07.2020.

Official list of sdg indicators. https://unstats.un.org/sdgs/metadata/, 12.07.2020.

Wikipedia page of sdg. https://en.wikipedia.org/wiki/Sustainable_Development_Goals,
12.07.2020.

Official website of the swiss tph. https://www.swisstph.ch/en/, 12.07.2020.

German wikipedia page of the swiss tph. hitps://de.wikipedia.org/wiki/Schweizerisches_Tropen-
_und_Public- Health- Institut# Forschungsschwerpunkte_und_Struktur, 12.07.2020.

Official website of docker. https://www.docker.com/, 13.07.2020.
Structure of an extension. https://www.hl7.org/fhir/extensibility.html, 13.07.2020.

Value set location physical type. http://hl7.org/fhir/valueset-location-physical-
type.html, 13.07.2020.

Official website of the microsoft sql server. hitps://www.microsoft.com/de-de/sql-
server/sql-server-downloads, 13.07.2020.

openimis database installation wiki page. https://openimis.atlassian.net/wiki/spaces/OP /pages/
906592471 /WAZ2.1+Database+installation, 13.07.2020.

Installation manuals for the modular and legacy version of openimis.
https://openimis. atlassian.net/wiki/spaces/OP /pages/ 786104344 /Installation
+and+ Country+ Localisation, 13.07.2020.

Bibliography 33

[18]

[19]

Official openimis github page. hitps://github.com/openimis, 13.07.2020.

Installation guide for the modular version of openimis.
https://openimis. atlassian.net/wiki/spaces/OP /pages/963182705/
MO1.1+Install+the+modular+openIMIS+using+Docker, 13.07.2020.

Github link to the development tool repository. https://github.com/openimis/openimis-
dev-tools/tree/developinitializing-modular-be-in-windows, 14.07.2020.

Fhir v3 location resource page. http://hl7.org/fhir/STUS/location.html, 15.07.2020.

Link to the openimis-be-api_fhir_py repository. hitps://github.com/openimis/openimis-
be-api_fhir_py, 15.07.2020.

Link to the apps.py script in github. https://github.com/openimis/openimis-be-
api_fhir_py/blob/master/api_fhir/apps.py, 15.07.2020.

Link to the configurations directory in github. https://github.com/openimis/openimis-
be-api_fhir_py/tree/master/api_fhir/configurations, 15.07.2020.

Fhir r4 mapping wiki page. https://openimis.atlassian.net/wiki/spaces/OP /pages/
1238649676 /openIMIS+FHIR+ R4+ Overview+Page, 15.07.2020.

Link to the generalconfiguration.py script in github.
https://github.com/openimis/openimis-be-api_fhir_py/blob/master/api_fhir/configurations/
general Configuration.py, 15.07.2020.

Link to the github repository of openimis-be-location_py.
https://github.com/openimis/openimis-be-location_py, 15.07.2020.

Link to the moduleconfiguration.py script in github.
https://github.com/openimis/openimis-be-api_fhir_py/blob/master/api_fhir/configurations,/
moduleConfiguration.py, 15.07.2020.

Link to the paginations.py script in github. https://github.com/openimis/openimis-be-
api-fhir_py/blob/master/api_fhir/paginations.py, 15.07.2020.

Link to the permissions.py script in github. https://github.com/openimis/openimis-be-
api-fhir_py/blob/master/api_fhir/permissions.py, 15.07.2020.

Link to the urls.py script in github. https://github.com/openimis/openimis-be-
api_fhir_py/blob/master/api_fhir /urls.py, 15.07.2020.

Link to the views.py script in github. https://github.com/openimis/openimis-be-
api-fhir_py/blob/master/api_fhir /views.py, 15.07.2020.

Official website of pypi. https://pypi.org/, 15.07.2020.
Official thirbase website. hittps://www.health-samurai.io/fhirbase, 16.07.2020.

fhir.resources package on pypi. https://pypi.org/project/fhir.resources/, 16.07.2020.

Bibliography 34

[36]

[37]

[41]

Official website of hisp india. https://hispindia.org/, 16.07.2020.

Pycharm page of the official jetbrains website. https://www.jetbrains.com/de-
de/pycharm/, 16.07.2020.

openimis-be-api_fhir_r4_py repository link. https://github.com/openimis/openimis-be-
api_fhir_r4{_py, 16.07.2020.

Link to the github repository of openimis-be-medical_py.
https://github.com/openimis/openimis-be-medical_py, 16.07.2020.

openimis wiki page for michel borer’s bachelor the-
sis. https://openimis. atlassian.net/wiki/spaces/OP /pages/
1277231105/ Database+migration+to+PostgreSQL+explorative+pilot, 16.07.2020.

openimis-fhir-data-migration_py repository link. https://github.com/openimis/openimis-
fhir-data-migration_py, 16.07.2020.

openimis wiki page for the data migration tool.
hitps://openimis. atlassian.net/wiki/spaces/OP /pages/ 1554448385 /open-
IMIS+FHIR+data+migration+tool, 16.07.2020.

Official postgresql website. https://www.postgresql.org/, 16.07.2020.

Self created openimis fhir r4 package. https://pypi.org/project/openimis-be-api-fhir-r4/,
16.07.2020.

Repository of the openimis databases. https://github.com/openimis/database_ms_sqlserver,
17.07.2020.

openimis demo video on youtube. https://www.youtube.com/watch?v=h3fj90penfUt=234s,
17.07.2020.

Alexander Schulze. Introducing openimis — an open source solution for universal health
coverage. hitps://www.youtube.com/watch?v=6UnOnIUDXcY, 12.07.2020.

SwissTPH. From imis to openimis. https: / /www.swisstph.ch/de/ueber-
uns/scih/sysu/health-economics-and-financing/imis/, 12.07.2020.

SwissTPH. Current openimis implementations. http://openimis.org/, 12.07.2020.

A.1 List of Abbreviations
openIMIS
Swiss TPH
FHIR R4
HL7

SDG

SDC

GDC

GIZ

SQL
JSON
XML
REST

API

URL

PyPI
HTTP
UUID

Appendix

open source Insurance Management Information System
Swiss Tropical and Public Health Institute

Fast Healthcare Interoperability Resources Release 4
Health Level Seven

Sustainable Development Goals

Swiss Development Cooperation

German Development Cooperation

Gesellschaft fiir Internationale Zusammenarbeit
Structured Query Language

JavaScript Object Notation

Extensible Markup Language

Representational State Transfer

Application Programming Interface

Uniform Resource Locator

Python Package Index

Hypertext Transfer Protocol

Universally Unique Identifier

Appendix

36

A.2 List of used Modules
openimis-be_py
openimis-be-api_thir_py
openimis-be-claim_batch_py
openimis-be-claim_py
openimis-be-contribution_py
openimis-be-core_py
openimis-be-insuree_py
openimis-be-location_py
openimis-be-medical_pricelist_py
openimis-be-medical_py
openimis-be-policy_py
openimis-be-product_py

openimis-be-report_py

https://github.com/openimis/openimis-be_py
https://github.com/openimis/openimis-be-api_thir_py
https://github.com/openimis/openimis-be-claim_batch_py
https://github.com/openimis/openimis-be-claim_py
https://github.com/openimis/openimis-be-contribution_py
https://github.com/openimis/openimis-be-core_py
https://github.com/openimis/openimis-be-insuree_py
https://github.com/openimis/openimis-be-location_py

https://github.com/openimis/openimis-be-medical_pricelist_py

https://github.com/openimis/openimis-be-medical _py
https://github.com/openimis/openimis-be-policy_py
https://github.com/openimis/openimis-be-product_py
https://github.com/openimis/openimis-be-report_py

A.3 List of Mapped Resources

Claim

ClaimResponse

Coverage

Patient

Practitioner
PractitionerRole

Location
CoverageEligibilityRequest
CoverageEligibilityResponse
CommunicationRequest
Condition

Medication
ActivityDefinition

HealthcareService

A.4 End Product
openimis-be-api_thir_r4_py
openimis-thir-data-migration_py

openimis-be-api-thir-r4 1.0.0

https://www.hl7.org/fhir/claim.html
https://www.hl7.org/fhir /claimresponse.html
https://www.hl7.org/fhir /coverage.html
https://www.hl7.org/thir /patient.html
https://www.hl7.org/fthir /practitioner.html
https://www.hl7.org/fhir/practitionerrole.html
https://www.hl7.org/fhir /location.html
https://www.hl7.org/fhir/coverageeligibilityrequest.html
https://www.hl7.org/fhir/coverageeligibilityresponse.html
https://www.hl7.org/fhir/communicationrequest.html
https://www.hl7.org/fhir/condition.html
https://www.hl7.org/fhir /medication.html
https://www.hl7.org/fhir /activitydefinition.html
https://www.hl7.org/thir /healthcareservice.html

https://github.com/openimis/openimis-be-api_thir_r4_py

https://github.com/openimis/openimis-thir-data-migration_py

https://pypi.org/project /openimis-be-api-thir-r4/

Appendix 37

A5 Mapping Tables
A.5.1 Overview Table

FHIR R4 Resource openlMIS database tables Notes Statu
Claim o thiclaim Request properties are mapped to Claim mapped
* tbiClaimitems
o thiClaimServices
ClaimResponse * thiclaim Response properties are mapped to Claim mapped

o tbiClaimitems
o thiClaimservices

mostly mapped

Coverage thlPolicy

Patient thlinsurees mapped

Practitioner thiClaimAdmin used to represent base fields of Claim mapped
Administrator (without relation with health facility- FHIR R4 Location)

PractitionerRole thiClaimAdmin used to represent a relation between base ClaimAdmin (FHIR Rd Partitioner) and Health mapped
facility (FHIR R4 Location)

Location thlLocation thlHF now mapped as HealthcareService mapped

CoverageEligibilityRequest CoverageEligibilityRequest mapped

CoverageEligibilityResponse CoverageEligibilityResponse mapped

CommunicationRequest thlFeedback mapped

Condition thlicDCodes mapped

Medication thlitems mapped

ActivityDefinition thiservices mapped

HealthcareService thlHF mapped

Figure A.1:
https://openimis.atlassian.net /wiki/spaces/OP /pages/1233649676 /openIMIS+FHIR+R4+Overview+Page

Appendix

A.5.2 Claim Table

FHIR R4 field

identifier
status

patient

billablePeriod

diagnosis

provider
total
created

supportinglnfo

facility

enterer
type

item.productOrService

item.exten:

nproductOrSe

item.quantity

item.unitprice
item.category.text

provider

priority

status
claim.insurance.focal
claim.insurance.sequence

dlaim.insurance.coverage

Figure A.2:

https://openimis.atlassian.net/wiki/spaces/OP /pages/1389592619 /FHIR+R4+-+Claim

openiMIs field

thiClaim ClaimID / tbiClaim.ClaimUUID / tbiClaim ClaimCode

one of [entered, checked, reviewed, valuated] based on

thiClaim.ClaimStatus
thiClaim.InsureeUUID

tbIClaim.Datefrom / thiClaim.DateTo

tbiClaim.ICDID / thlClaim.ICDID1 / tbiClaim.ICDID2 /
tbIClaimICDID3 / thlClaim.ICDID4

tbIClaim Adjuster
tbiClaim.Claimed
thiClaim DateClaimed

tbIClaim Explanation / thiClaim Guaranteeld /
thiClaimit lability / tblClaimitems Explanation /
thic

Services.Explanation

tbIClaim HFID

tbIClaim.ClaimAdminid

\VisitType

Items.tblitem.itemCode /

Services.tblServices ServiceCode

Items.ItemUUID / thlClaimServices ServiceUUID

thiClaimitems QtyProvided / thiClaimServices.QtyProvided

thiClaimitems PriceAsked / thlClaimServices PriceAsked

“service” or “item”

thIClaimAdmin.ClaimAdminUUID
code = “normal”

“claim”

“active”

True

thlPolicy:PolicyUUID

notes

Claim can have multiple identifiers. The most important one
is mapped from ClaimuUID.

entered state by default

reference to Patient resource

Datefrom and DateTo are mapped to a period of time

between them
reference to Condition resource

There is an error with the POST for both versions. When the

error is found complete the mapping,
to be validated

mapped as Money data type

information category is distinguishing the type of information

renamed from information (STU3) to supportingInfo (R4)

reference to HealthcareService resource

FHIR specification: reference to Location 4

reference to Practitioner resource

actual Code value

reference to Medication resource if medical item

reference to ActivityDefinition resource if medical service

price could differ from the price defined in medical
item/service definition

distinguishing whether mapping is done from

thiClaimsServices or thiClaimitems
reference to PractitionerRole resource

CodeableConcept

reference to Coverage resource

mapping status

mapped

mapped - mandatory

mapped - mandatory

mapped - mandatory

from fhir to imis not mapped (diagnosis)

not mapped
mapped - mandatory
mapped - mandatory

mapped

mapped - mandatory

mapped
mapped - mandatory

mapped - mandatory

mapped

mapped

mapped

mapped - mandatory

mapped for db tool reason
mapped for db tool reason
mapped for db tool reason
mapped for db tool reason
mapped for db tool reason
mapped for db tool reason

mapped for db tool reason

Appendix

39

A.5.3 ClaimResponse Table

FHIR R4 field

identifier

patient
outcome
paymentadjustmentReason

total.category.code
total.amount
communicationRequest
error.code.coding.code

error.code.text

item.adjudication.reason

item.adjudication.value

item.adjudication.amount

processNote.text

disposition

created

request
type

status.

requestor
use

insurer

Figure A.3:

OpenlMIS field

tblIClaim.ClaimID / tblClaim.ClaimUUID /
tblClaim.ClaimCode

tblClaim.InsureeUUID
tblClaim ClaimStatus
tblClaim Adjustment

based on the state: Approved, Valuated, Reinsured,
Claimed

tblClaim Approved / tblClaim.Valuated /
thiClaim Reinsured / tblClaim.Claimed

thiClaim.feedbackld

tbiClaimrejectionReason
tbiClaimrejectionReason as primary language text

tbiClaimitems ClaimitemStatus /
tbiClaimitems.Justification /
tbIClaimitems RejectionReason /
thiClaimServices.ClaimServiceStatus /
tblClaimServices.Justification /

tbiClaimServices RejectionReason

tbIClaimitems.QtyProvided /
tbIClaimitems.QtyApproved /
tbIClaimServices.QtyProvided /
tbiClaimServices.QtyApproved

thiClaimitems PriceAdjusted /
tblClaimitems.PriceAdjusted /
tblClaimltems.PriceApproved /
tbiClaimitems.PriceValuated /
tblClaimServices.PriceAdjusted /
thiClaimServices PriceAdjusted /
tblClaimServices.PriceApproved /
tbIClaimServices.PriceValuated

tbIClaimitems.Justification / tbIClaimitems.PriceOrigin /
tblClaimServices.Justification /

tblClaimServices.PriceOrigin

TimeUtils.date

tbIClaim.VisitType

tbIClaim.ReviewStatus

tbIHF HealthFacility
“claim”

“Organisation/openiMIS”

notes.

Claim can have multiple identifiers. The most important

one is mapped from ClaimUUID.
reference to Patient resource

changed from CodeableConcept to code

returning the benefit amount

mapped as Money data type

reference to CommunicationRequest resource
decision if Feedback to be shared with Health Facilities
!

adjudication.reason contains the rejection code

(with adjudication.category = "rejected_reason”)

Monetary amount / value is taken from limitation value
by default

The openIMis field considered here depends on the
status of the claims.

claimResponse.tem.noteNumber can be used to join

information about the mapped field and claim item

current date is taken on the moment of processing

claim

Should be mapped to ValidityTo for the date of last
change?

reference to Claim

status in [1: “Idl "Not Selected”,
Review”, 8: "Reviewed", 16: “ByPassed"]

reference to HealthcareService resource

“openiMIS" from module configuration key

mapping status

mapped

mapped
mapped
mapped

mapped

mapped

mapped

mapped

to be mapped

mapped

mapped

mapped

mapped

not mapped

mapped

mapped
mapped

mapped

mapped
mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1389592652 /FHIR+R4+-

+ClaimResponse

Appendix

40

A.5.4 Coverage Table

FHIR R4 field OpenlMIS field
Identifier PolicyID / PolicyUuUID
policyHolder FamilylD

period StartDate / ExpiryDate
status PolicyStatus

contract.term.asset.value | PolicyValue

dltem.net

class ProdID

contract.term.offer.party | OfficerlD

Figure A.4:

notes

start date and expiry
date are mapped to a
period of time between

them

contract.valueditem is
now defined as
contract.term.asset.value

ditem

renamed from grouping

to class

contract.agent is now
defined as

contract.term.offe r.party

mapping status
mapped
mapped

mapped

mapped

mapped

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1389297783 /FHIR+R4+-

+Coverage

Appendix

41

A.5.5 Patient Table

FHIR R4 field

identifier
name
birthDate

gender

maritalStatus
telecom
photo.url

photo. creation
generalPractitioner
address

link.other

link.type

extension.isHead
extension.registrationDate

extension.locationCode
extension.educationCode.valueCoding.code
extension.educationCode.valueCoding.display
extension.professionCode.valueCoding.code

extension professionCode.valueCoding.display

extension.povertyStatus

Figure A.5:

openIMIS field

InsureelD / CHFID / passport / TypeOfid /
InsureeUUID

LastName / OtherNames

DOB
Gender

Marital

Phone / Email

tblinsuree.PhotolD — tblPhotos.PhotoFolder +
PhotoFileName

tblinsuree.PhotolD — tblPhotos.PhotoDate
HFID
CurrentAddress / GeoLocation

link to tblinsuree.Familyld —
tbIFamilies.Insureeld — tblinsurees.InsureeUUID

- ions.relation

tblinsuree.IsHead

tblinsuree.ValidityFrom

link to tblinsuree.Familyld —
tbIFamilies.Locationld—
tblLocations.LocationUUID

tblinsuree.Education —
tblEducations.Educationld
tblinsuree.Education — tblEducations.Education

tblinsuree.Profession —
tblProfessions.Professionld
tblinsuree.Profession —
tbIProfessions.Profession

tblinsuree — tblFamilies — Poverty

Notes

there is a 0..* relation on identifier

name field contains values that are being
mapped for both LastName and OtherNames
fields

Link to gender_codes configuration key

maritalStatus.text in [Married, Single, Divorced,
Widowed, Not specified]

telecom field contains values that are being
mapped for both Phone and Email fields

Should include the base URL

reference/HeathcareService
The patient can contain multiple addresses

reference Patient/UUID
UUID is head of the family

url: B isHead
type: valueBoolean

url: B registrationDate
type: valueDateTime

url: B locationCode
type: valueReference

utl: Bl educationCode
type: valueCoding

utl: B professionCode
type: valueCoding

url: B povertyStatus

type: valueBoolean

Mapping status

InsureelD / CHFID / passport / InsureeUUID is
mapped

mapped

mapped
mapped

mapped

mapped

mapped

mapped
mapped
mapped

mapped

mapped

mapped

mapped

mapped

mapped

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1389133931 /FHIR+R4+-+Patient

Appendix

42

A.5.6 Practitioner Table

FHIR R4 field OpenlIMIS field

identifier claimAdminUUID /
claimAdminCode
name LastName / OtherNames
birthDate DOB
telecom Phone / Emailld
Figure A.6:

notes

identifier field contains
values that are being
mapped for both
claimAdminUUID and

claimAdminCode fields

name field contains
values that are being
mapped for both
LastName and
OtherNames fields

telecom field contains
values that are being
mapped for both Phone

and Email fields

mapping status

mapped

mapped

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1389592716 /FHIR+R4+-

+Practitioner

A.5.7 PractitionerRole Table

FHIR R4 field OpenlIMIS field

Rest field of Claim
Admin

practitioner -

Reference(Practitioner)

healthcareService - HFId
Reference(HealthcareSer

vice)

Figure A.T:

notes

example of reference
(where "
{ClaimAdminCode}" is
the Claim Admin code):

“Practitioner/{ClaimAdm

inCode}”

example of reference
(where "{HFCode}" is the
health facility code):

"HealthcareService/{HFU
uID}"

mapping status

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1389592724 /FHIR+R4+-

+PractitionerRole

Appendix 43

A.5.8 Location Table

FHIR R4 field openIMIS field Notes mapping status
identifier tblLocations.Locationld / Reference to FHIR Location from other mapped
tblLocations.LocationCode / resources is done through UUID field

tblLocations.LocationUUID

name tblLocatons.LocationName mapped

physicalType thlLocations LocationType / “H" type.coding contains one of [R, D', W', V', "H] | mapped

type.text is one of [region’, ‘district’, ‘ward’,

village', "hospital’]

partof tblLocations.ParentLocationld — Reference to the parent location. Regions don't | mapped
tblLocations.LocationUUID have a parent.
Composite structure: Region — District — Ward

— Village

Figure A.8:
https://openimis.atlassian.net /wiki/spaces/OP /pages/1389297887 /FHIR+R4+-+Location

A.5.9 CoveragekEligibilityRequest Table

FHIR R4 field OpenlIMIS field notes mapping
status

patient CHFID mapped

item.category ServiceCode or temCode | Item or Service code mapped

as defined in

openIMIS
item.productOrService Medical Item or Service Specify if the itemisa | mapped
type Service or an ltem

Figure A.9:
https://openimis.atlassian.net /wiki/spaces/OP /pages/1390182413 /FHIR+R4+-
+CoverageEligibilityRequest

Appendix

44

A.5.10 CoveragekEligibilityResponse Table

FHIR R4 field
patient

insurance.item.benefit.al

lowedUnsignedint

insurance.item.benefit.al

lowedMoney

insurance.item.excluded

Figure A.10:

OpenlIMIS field
eligibility_request

prod_id /
total_admissions_left /
total_visits_left / total-
consultations_left /
total_surgeries_left /
total_deliveries_left /
total_antenatals_left /

service_left / item_left

consultation_amount_lef
t / surgery_amount_left /
delivery_amount_left /
hospitalization_amount_|
eft/

antenatal_amount_left

is_item_ok /

is_service_ok

notes

item field contains all
the information mapped
to all listed fields

benefitBalance is
redefined as item and

financial as item.benefit

item field contains all
the information mapped

to all listed fields

benefitBalance is
redefined as item and

financial as item.benefit

item field contains all
the information mapped
to all listed fields

mapping status
not mapped

mapped

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1389297897 /FHIR+R4+-
+CoverageEligibilityResponse

A.5.11

FHIR R4 field
identifier

reasonCode

occurrenceDateTime

status

Figure A.11:

Communicationrequest Table

OpenlIMIS field
feedbackld

CareRendered /
PaymentAsked /
DrugPrescribed /
DrugReceived /

Assessment
feedBackDate

“active”

notes

reasonCode field
contains all the
information mapped to
all listed fields

mapping status
mapped

mapped

mapped

mapped

https://openimis.atlassian.net/wiki/spaces/OP /pages/1389592873 /FHIR +R4+-

+CommunicationRequest

Appendix

45

Ab5.12

FHIR R4 field

identifier
code.coding

code.text
recordedDate

subject

Figure A.12:

Condition Table

OpenIMIS field

thlICDCodes.ICDID / thlICDCodes.ICDUUID /
tbllICDCodes.ICDCode

tbllICDCodes.ICDCode

tblICDCodes.ICDName
thlICDCodes.ValidityFrom

reference.type = “Patient”

notes

tblICDCodes doesn't contains UUID identifier.

This should be added in the next release.

Condition resource has a different field for code

and is not part of the identifier.
The name of the diagnosis.
date from when the diagnosis is valid.

reference to Patient resource

mapping status

mapped

mapped

mapped
mapped

only mapped to be able to create a database

https://openimis.atlassian.net /wiki/spaces/OP /pages/1399914531 /FHIR+R4+-

+Condition

A.5.13 Medication Table

FHIR R4 field

identifier
code.coding

code.text
form

amount

frequency

extension.unitPrice

extension.useContext.code

extension.useContext.valueCodeableConcept.te

xt

extension.topic

Figure A.13:

openlMIS field

tblitems.IltemID / tblitems.ltemUUID /
tblitems.ltemCode

tblitems.ltemCode

tblitems.ItemName
tblitems.ItemPackage

tblitems.ItemPackage

thlitems.ItemFrequency

tblitems.ItemPrice

one of ['gender”, “age”, “venue"]

one of:

e tblitems.ItemPatCat decomposed in
“gender” and “age”

o thlitems.temCareType for “venue" code

o thlitems.ltemType

notes

The code of the medication. Duplicated in

identifier.

The name of the medication.

string part: “tables”, “pieces”, etc.

integer part: 1000, 100, etc

If not possible to split then keep only form field

ItemPackage was not split because not all
notations in the demo database are uniformly

entered. For instance row 145 and 151.

Also there are some misspellings like in row 43.

mapped as extension.valuelnteger: integer

mapped as Money
openlIMIS extension to Medication
url=unitPrice, valueMoney.value as
tblitems.ItemPrice

valueMoney.currency to be identified

extension

see UsageContext

if multiple values per code then duplicate the
code for each value: ex. service available for

man and women “gender” code
“gender” and “age" codes can be found twice

tblServices.ServPatCat is binary codded:
Kids*8+Adults*4+Womens*2+Mens

extension for DefinitionTopic

mapping status

mapped

mapped

mapped
mapped as whole package
not mapped but possible

see notes

mapped

mapped

mapped

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1400045588 /FHIR+R4+-

+Medication

Appendix

46

A5.14

FHIR R4 field

identifier

status

date

name

title
useContext.code

useContext.valueCodeableConcept.text

topic
code
frequency

unitPrice

Figure A.14:

ActivityDefinition Table

openIMIS field

tbliServices.ServicelD / tblServices.ServiceUUID /
tbiServices.ServCode

string “active”

tblServices.ValidityFrom
tbiServices.ServCode

tblServices.ServName

one of ["gender”, “age”, “workflow”, “venue’]
one of:

* tblServices.ServPatCat decomposed in
“gender” and "age”

o thbiServices.ServCategory for “workflow”
code

o thiServices.ServCareType for “venue” code
thiServicesSenvType

thiServicesServCode and tbiServices.ServName
thiServices.ServFrequency

tblServices.ServPrice

notes

mandatory => only valid services are managed
the last date changed

the code of the medical service.

the name of the medical service.

see UsageContext

if multiple values per code then duplicate the
code for each value: ex. service available for

man and women “gender” code
“gender” and “age” codes can be found twice

tblServices.ServPatCat is binary codded:
Kids*8+Adults*4+Womens*2+Mens

extension for DefinitionTopic
can replace name and title
mapped as extension.valuelnteger: integer

mapped as extension.valueMoney: Money

mapping status

mapped

mapped
mapped
mapped
mapped
mapped

mapped

mapped
mapped
mapped

mapped

https://openimis.atlassian.net/wiki/spaces/OP /pages/1400012844 /FHIR+R4+-

+ActivityDefinition

A.5.15 HealthcareService Table

FHIR R4 field

identifier

name

category

type

specialty

location
extraDetails

telecom

program

coverageArea

Figure A.15:

openlMIS field

thIHF.Hfld / thIHF.HFCode / tbIHF.HfUUID

tbIHF.HFName

thIHF.HFLevel

thIHF.HFCareType

tbIHF.HFSublevel

tbIHF.Locationld
tbIHF.HFAddress

tbIHF.Phone / tbIHF.Fax / tbIHF.eMail

tbIHF.LegalForm

list of [reference tblLocation]

Notes

Reference to FHIR HealthcareService from other

resources is done through UUID field

type.coding contains one of [H, ‘C’, D]

type.text is one of ['hospital’, ‘hospital center’,
‘dispensary’]

type.coding contains one of ['I', ‘0", 'B]

type.text is one of ['in-patient’, ‘out-patient’,
‘both]
link to tbIHFSublevel:

e coding.code as HFSublevel (id)

® text as HFSublevelDesc

reference to Location/UUID

telecom field contains values that are being

mapped for Phone, Fax and Email fields

link to thlLegalForms:
o coding.code as LegalFormCode (id)

* text as LegalForms

all thlLocations->tblHFCatchment->tbIHF with
ValidityTo=null

mapping status

mapped

mapped

mapped

mapped

mapped

mapped
mapped

mapped

mapped

mapped

https://openimis.atlassian.net /wiki/spaces/OP /pages/1517617153 /FHIR+R4+-

+HealthcareService

Declaration on Scientific Integrity
Erklarung zur wissenschaftlichen Redlichkeit

includes Declaration on Plagiarism and Fraud

beinhaltet Erklarung zu Plagiat und Betrug

Author — Autor

Faris Ahmetasevic

Matriculation number — Matrikelnummer
2015-059-538

Title of work — Titel der Arbeit
Integration of Fast Healthcare Interoperability Resources (HL7 FHIR) into the openlMIS

open source Health Insurance Management System

Type of work — Typ der Arbeit

Bachelor thesis

Declaration — Erklédrung

I hereby declare that this submission is my own work and that I have fully acknowledged
the assistance received in completing this work and that it contains no material that has
not been formally acknowledged. I have mentioned all source materials used and have cited

these in accordance with recognised scientific rules.

Hiermit erkldre ich, dass mir bei der Abfassung dieser Arbeit nur die darin angegebene
Hilfe zuteil wurde und dass ich sie nur mit den in der Arbeit angegebenen Hilfsmitteln
verfasst habe. Ich habe sdmtliche verwendeten Quellen erwahnt und geméss anerkannten

wissenschaftlichen Regeln zitiert.

Basel, 20.07.2020

Signature — Unterschrift

	Acknowledgments
	Abstract
	Table of Contents
	1 Introduction
	1.1 Swiss TPH
	1.2 openIMIS
	1.2.1 Objective
	1.2.2 How to achieve that?
	1.2.3 History
	1.2.4 System Description

	1.3 HL7 FHIR
	1.3.1 Resources
	1.3.1.1 Structure
	1.3.1.2 JSON Representation

	1.3.2 Codes
	1.3.3 Extensions

	1.4 Process of the project

	2 Preparation
	2.1 Requirements
	2.1.1 Operating System
	2.1.2 Microsoft SQL Server 2017

	2.2 Setting up openIMIS

	3 Development
	3.1 Architecture of the FHIR version 3 module
	3.1.1 Configurations
	3.1.2 paginations.py
	3.1.3 Models
	3.1.4 Converters
	3.1.5 Serializer
	3.1.6 permissions.py
	3.1.7 views.py
	3.1.8 urls.py

	3.2 Access to the FHIR API
	3.3 Integration of FHIR R4 into openIMIS
	3.4 Mapping
	3.4.1 Mapping process

	3.5 Data Migration Tool
	3.5.1 Database Management System
	3.5.2 JSON File Creator
	3.5.3 Creating Database Tables
	3.5.4 Merging Both Tools
	3.5.5 How to use it?

	3.6 Publishing the openIMIS FHIR R4 Module

	4 Conclusion
	4.1 Conclusion
	4.2 Future Work

	Bibliography
	A Appendix
	A.1 List of Abbreviations
	A.2 List of used Modules
	A.3 List of Mapped Resources
	A.4 End Product
	A.5 Mapping Tables
	A.5.1 Overview Table
	A.5.2 Claim Table
	A.5.3 ClaimResponse Table
	A.5.4 Coverage Table
	A.5.5 Patient Table
	A.5.6 Practitioner Table
	A.5.7 PractitionerRole Table
	A.5.8 Location Table
	A.5.9 CoverageEligibilityRequest Table
	A.5.10 CoverageEligibilityResponse Table
	A.5.11 Communicationrequest Table
	A.5.12 Condition Table
	A.5.13 Medication Table
	A.5.14 ActivityDefinition Table
	A.5.15 HealthcareService Table

	Declaration on Scientific Integrity

